tmux/grid.c

1397 lines
31 KiB
C
Raw Normal View History

/* $OpenBSD$ */
/*
* Copyright (c) 2008 Nicholas Marriott <nicholas.marriott@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF MIND, USE, DATA OR PROFITS, WHETHER
* IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
#include "tmux.h"
/*
* Grid data. This is the basic data structure that represents what is shown on
* screen.
*
* A grid is a grid of cells (struct grid_cell). Lines are not allocated until
* cells in that line are written to. The grid is split into history and
* viewable data with the history starting at row (line) 0 and extending to
* (hsize - 1); from hsize to hsize + (sy - 1) is the viewable data. All
* functions in this file work on absolute coordinates, grid-view.c has
* functions which work on the screen data.
*/
/* Default grid cell data. */
const struct grid_cell grid_default_cell = {
{ { ' ' }, 0, 1, 1 }, 0, 0, 8, 8, 0
};
/* Cleared grid cell data. */
const struct grid_cell grid_cleared_cell = {
{ { ' ' }, 0, 1, 1 }, 0, GRID_FLAG_CLEARED, 8, 8, 0
};
static const struct grid_cell_entry grid_cleared_entry = {
GRID_FLAG_CLEARED, { .data = { 0, 8, 8, ' ' } }
};
static void grid_empty_line(struct grid *, u_int, u_int);
/* Store cell in entry. */
static void
grid_store_cell(struct grid_cell_entry *gce, const struct grid_cell *gc,
u_char c)
{
gce->flags = (gc->flags & ~GRID_FLAG_CLEARED);
gce->data.fg = gc->fg & 0xff;
if (gc->fg & COLOUR_FLAG_256)
gce->flags |= GRID_FLAG_FG256;
gce->data.bg = gc->bg & 0xff;
if (gc->bg & COLOUR_FLAG_256)
gce->flags |= GRID_FLAG_BG256;
gce->data.attr = gc->attr;
gce->data.data = c;
}
/* Check if a cell should be an extended cell. */
static int
grid_need_extended_cell(const struct grid_cell_entry *gce,
const struct grid_cell *gc)
{
if (gce->flags & GRID_FLAG_EXTENDED)
return (1);
if (gc->attr > 0xff)
return (1);
if (gc->data.size != 1 || gc->data.width != 1)
return (1);
2017-04-19 12:44:29 +00:00
if ((gc->fg & COLOUR_FLAG_RGB) || (gc->bg & COLOUR_FLAG_RGB))
return (1);
if (gc->us != 0) /* only supports 256 or RGB */
return (1);
return (0);
}
/* Get an extended cell. */
static void
grid_get_extended_cell(struct grid_line *gl, struct grid_cell_entry *gce,
int flags)
{
u_int at = gl->extdsize + 1;
gl->extddata = xreallocarray(gl->extddata, at, sizeof *gl->extddata);
gl->extdsize = at;
gce->offset = at - 1;
gce->flags = (flags | GRID_FLAG_EXTENDED);
}
/* Set cell as extended. */
static struct grid_cell *
grid_extended_cell(struct grid_line *gl, struct grid_cell_entry *gce,
const struct grid_cell *gc)
{
struct grid_cell *gcp;
int flags = (gc->flags & ~GRID_FLAG_CLEARED);
if (~gce->flags & GRID_FLAG_EXTENDED)
grid_get_extended_cell(gl, gce, flags);
else if (gce->offset >= gl->extdsize)
fatalx("offset too big");
gl->flags |= GRID_LINE_EXTENDED;
gcp = &gl->extddata[gce->offset];
memcpy(gcp, gc, sizeof *gcp);
gcp->flags = flags;
return (gcp);
}
/* Free up unused extended cells. */
static void
grid_compact_line(struct grid_line *gl)
{
int new_extdsize = 0;
struct grid_cell *new_extddata;
struct grid_cell_entry *gce;
struct grid_cell *gc;
u_int px, idx;
if (gl->extdsize == 0)
return;
for (px = 0; px < gl->cellsize; px++) {
gce = &gl->celldata[px];
if (gce->flags & GRID_FLAG_EXTENDED)
new_extdsize++;
}
if (new_extdsize == 0) {
free(gl->extddata);
gl->extddata = NULL;
gl->extdsize = 0;
return;
}
new_extddata = xreallocarray(NULL, new_extdsize, sizeof *gl->extddata);
idx = 0;
for (px = 0; px < gl->cellsize; px++) {
gce = &gl->celldata[px];
if (gce->flags & GRID_FLAG_EXTENDED) {
gc = &gl->extddata[gce->offset];
memcpy(&new_extddata[idx], gc, sizeof *gc);
gce->offset = idx++;
}
}
free(gl->extddata);
gl->extddata = new_extddata;
gl->extdsize = new_extdsize;
}
2018-07-11 06:43:45 +00:00
/* Get line data. */
struct grid_line *
grid_get_line(struct grid *gd, u_int line)
{
return (&gd->linedata[line]);
}
2018-07-11 06:43:45 +00:00
/* Adjust number of lines. */
void
grid_adjust_lines(struct grid *gd, u_int lines)
{
gd->linedata = xreallocarray(gd->linedata, lines, sizeof *gd->linedata);
}
/* Copy default into a cell. */
static void
grid_clear_cell(struct grid *gd, u_int px, u_int py, u_int bg)
{
struct grid_line *gl = &gd->linedata[py];
struct grid_cell_entry *gce = &gl->celldata[px];
struct grid_cell *gc;
memcpy(gce, &grid_cleared_entry, sizeof *gce);
if (bg != 8) {
if (bg & COLOUR_FLAG_RGB) {
grid_get_extended_cell(gl, gce, gce->flags);
gl->flags |= GRID_LINE_EXTENDED;
gc = &gl->extddata[gce->offset];
memcpy(gc, &grid_cleared_cell, sizeof *gc);
gc->bg = bg;
} else {
if (bg & COLOUR_FLAG_256)
gce->flags |= GRID_FLAG_BG256;
gce->data.bg = bg;
}
}
}
/* Check grid y position. */
static int
2019-12-03 10:47:22 +00:00
grid_check_y(struct grid *gd, const char *from, u_int py)
{
2017-11-03 17:02:33 +00:00
if (py >= gd->hsize + gd->sy) {
log_debug("%s: y out of range: %u", from, py);
return (-1);
}
return (0);
}
/* Compare grid cells. Return 1 if equal, 0 if not. */
int
grid_cells_equal(const struct grid_cell *gca, const struct grid_cell *gcb)
{
if (gca->fg != gcb->fg || gca->bg != gcb->bg)
return (0);
if (gca->attr != gcb->attr || gca->flags != gcb->flags)
return (0);
if (gca->data.width != gcb->data.width)
return (0);
if (gca->data.size != gcb->data.size)
return (0);
return (memcmp(gca->data.data, gcb->data.data, gca->data.size) == 0);
}
/* Free one line. */
static void
grid_free_line(struct grid *gd, u_int py)
{
free(gd->linedata[py].celldata);
gd->linedata[py].celldata = NULL;
free(gd->linedata[py].extddata);
gd->linedata[py].extddata = NULL;
}
/* Free several lines. */
static void
grid_free_lines(struct grid *gd, u_int py, u_int ny)
{
u_int yy;
for (yy = py; yy < py + ny; yy++)
grid_free_line(gd, yy);
}
/* Create a new grid. */
struct grid *
grid_create(u_int sx, u_int sy, u_int hlimit)
{
struct grid *gd;
gd = xmalloc(sizeof *gd);
gd->sx = sx;
gd->sy = sy;
if (hlimit != 0)
gd->flags = GRID_HISTORY;
else
gd->flags = 0;
gd->hscrolled = 0;
gd->hsize = 0;
gd->hlimit = hlimit;
if (gd->sy != 0)
gd->linedata = xcalloc(gd->sy, sizeof *gd->linedata);
else
gd->linedata = NULL;
return (gd);
}
/* Destroy grid. */
void
grid_destroy(struct grid *gd)
{
grid_free_lines(gd, 0, gd->hsize + gd->sy);
free(gd->linedata);
free(gd);
}
/* Compare grids. */
int
grid_compare(struct grid *ga, struct grid *gb)
{
struct grid_line *gla, *glb;
struct grid_cell gca, gcb;
u_int xx, yy;
if (ga->sx != gb->sx || ga->sy != gb->sy)
return (1);
for (yy = 0; yy < ga->sy; yy++) {
gla = &ga->linedata[yy];
glb = &gb->linedata[yy];
if (gla->cellsize != glb->cellsize)
return (1);
for (xx = 0; xx < gla->cellsize; xx++) {
grid_get_cell(ga, xx, yy, &gca);
grid_get_cell(gb, xx, yy, &gcb);
if (!grid_cells_equal(&gca, &gcb))
return (1);
}
}
return (0);
}
2018-07-11 06:51:39 +00:00
/* Trim lines from the history. */
static void
grid_trim_history(struct grid *gd, u_int ny)
{
grid_free_lines(gd, 0, ny);
memmove(&gd->linedata[0], &gd->linedata[ny],
(gd->hsize + gd->sy - ny) * (sizeof *gd->linedata));
}
/*
* Collect lines from the history if at the limit. Free the top (oldest) 10%
* and shift up.
*/
void
grid_collect_history(struct grid *gd)
{
u_int ny;
if (gd->hsize == 0 || gd->hsize < gd->hlimit)
return;
ny = gd->hlimit / 10;
if (ny < 1)
ny = 1;
if (ny > gd->hsize)
ny = gd->hsize;
/*
* Free the lines from 0 to ny then move the remaining lines over
* them.
*/
2018-07-11 06:51:39 +00:00
grid_trim_history(gd, ny);
gd->hsize -= ny;
if (gd->hscrolled > gd->hsize)
gd->hscrolled = gd->hsize;
}
/* Remove lines from the bottom of the history. */
void
grid_remove_history(struct grid *gd, u_int ny)
{
u_int yy;
if (ny > gd->hsize)
return;
for (yy = 0; yy < ny; yy++)
grid_free_line(gd, gd->hsize + gd->sy - 1 - yy);
gd->hsize -= ny;
}
/*
* Scroll the entire visible screen, moving one line into the history. Just
* allocate a new line at the bottom and move the history size indicator.
*/
void
grid_scroll_history(struct grid *gd, u_int bg)
{
u_int yy;
yy = gd->hsize + gd->sy;
gd->linedata = xreallocarray(gd->linedata, yy + 1,
sizeof *gd->linedata);
grid_empty_line(gd, yy, bg);
gd->hscrolled++;
grid_compact_line(&gd->linedata[gd->hsize]);
gd->hsize++;
}
/* Clear the history. */
void
grid_clear_history(struct grid *gd)
{
2018-07-11 06:51:39 +00:00
grid_trim_history(gd, gd->hsize);
gd->hscrolled = 0;
gd->hsize = 0;
gd->linedata = xreallocarray(gd->linedata, gd->sy,
sizeof *gd->linedata);
}
/* Scroll a region up, moving the top line into the history. */
void
grid_scroll_history_region(struct grid *gd, u_int upper, u_int lower, u_int bg)
{
2017-05-13 07:30:50 +00:00
struct grid_line *gl_history, *gl_upper;
u_int yy;
/* Create a space for a new line. */
yy = gd->hsize + gd->sy;
gd->linedata = xreallocarray(gd->linedata, yy + 1,
sizeof *gd->linedata);
/* Move the entire screen down to free a space for this line. */
gl_history = &gd->linedata[gd->hsize];
memmove(gl_history + 1, gl_history, gd->sy * sizeof *gl_history);
/* Adjust the region and find its start and end. */
upper++;
gl_upper = &gd->linedata[upper];
lower++;
/* Move the line into the history. */
memcpy(gl_history, gl_upper, sizeof *gl_history);
/* Then move the region up and clear the bottom line. */
memmove(gl_upper, gl_upper + 1, (lower - upper) * sizeof *gl_upper);
grid_empty_line(gd, lower, bg);
/* Move the history offset down over the line. */
gd->hscrolled++;
gd->hsize++;
}
/* Expand line to fit to cell. */
static void
grid_expand_line(struct grid *gd, u_int py, u_int sx, u_int bg)
{
struct grid_line *gl;
u_int xx;
gl = &gd->linedata[py];
if (sx <= gl->cellsize)
return;
2017-02-08 08:26:35 +00:00
if (sx < gd->sx / 4)
sx = gd->sx / 4;
else if (sx < gd->sx / 2)
sx = gd->sx / 2;
else
sx = gd->sx;
gl->celldata = xreallocarray(gl->celldata, sx, sizeof *gl->celldata);
for (xx = gl->cellsize; xx < sx; xx++)
grid_clear_cell(gd, xx, py, bg);
gl->cellsize = sx;
}
/* Empty a line and set background colour if needed. */
static void
grid_empty_line(struct grid *gd, u_int py, u_int bg)
{
memset(&gd->linedata[py], 0, sizeof gd->linedata[py]);
if (!COLOUR_DEFAULT(bg))
grid_expand_line(gd, py, gd->sx, bg);
}
/* Peek at grid line. */
const struct grid_line *
grid_peek_line(struct grid *gd, u_int py)
{
if (grid_check_y(gd, __func__, py) != 0)
return (NULL);
return (&gd->linedata[py]);
}
/* Get cell from line. */
static void
grid_get_cell1(struct grid_line *gl, u_int px, struct grid_cell *gc)
{
struct grid_cell_entry *gce = &gl->celldata[px];
if (gce->flags & GRID_FLAG_EXTENDED) {
if (gce->offset >= gl->extdsize)
memcpy(gc, &grid_default_cell, sizeof *gc);
else
memcpy(gc, &gl->extddata[gce->offset], sizeof *gc);
return;
}
gc->flags = gce->flags & ~(GRID_FLAG_FG256|GRID_FLAG_BG256);
gc->attr = gce->data.attr;
gc->fg = gce->data.fg;
if (gce->flags & GRID_FLAG_FG256)
gc->fg |= COLOUR_FLAG_256;
gc->bg = gce->data.bg;
if (gce->flags & GRID_FLAG_BG256)
gc->bg |= COLOUR_FLAG_256;
gc->us = 0;
utf8_set(&gc->data, gce->data.data);
}
/* Get cell for reading. */
void
grid_get_cell(struct grid *gd, u_int px, u_int py, struct grid_cell *gc)
{
if (grid_check_y(gd, __func__, py) != 0 ||
px >= gd->linedata[py].cellsize)
memcpy(gc, &grid_default_cell, sizeof *gc);
else
grid_get_cell1(&gd->linedata[py], px, gc);
}
/* Set cell at relative position. */
void
2013-10-10 12:01:14 +00:00
grid_set_cell(struct grid *gd, u_int px, u_int py, const struct grid_cell *gc)
{
struct grid_line *gl;
struct grid_cell_entry *gce;
if (grid_check_y(gd, __func__, py) != 0)
return;
grid_expand_line(gd, py, px + 1, 8);
gl = &gd->linedata[py];
if (px + 1 > gl->cellused)
gl->cellused = px + 1;
gce = &gl->celldata[px];
if (grid_need_extended_cell(gce, gc))
grid_extended_cell(gl, gce, gc);
else
grid_store_cell(gce, gc, gc->data.data[0]);
}
/* Set cells at relative position. */
void
grid_set_cells(struct grid *gd, u_int px, u_int py, const struct grid_cell *gc,
const char *s, size_t slen)
{
struct grid_line *gl;
struct grid_cell_entry *gce;
struct grid_cell *gcp;
u_int i;
if (grid_check_y(gd, __func__, py) != 0)
return;
grid_expand_line(gd, py, px + slen, 8);
gl = &gd->linedata[py];
if (px + slen > gl->cellused)
gl->cellused = px + slen;
for (i = 0; i < slen; i++) {
gce = &gl->celldata[px + i];
if (grid_need_extended_cell(gce, gc)) {
gcp = grid_extended_cell(gl, gce, gc);
utf8_set(&gcp->data, s[i]);
} else
grid_store_cell(gce, gc, s[i]);
}
}
/* Clear area. */
void
grid_clear(struct grid *gd, u_int px, u_int py, u_int nx, u_int ny, u_int bg)
{
struct grid_line *gl;
u_int xx, yy, ox, sx;
if (nx == 0 || ny == 0)
return;
if (px == 0 && nx == gd->sx) {
grid_clear_lines(gd, py, ny, bg);
return;
}
if (grid_check_y(gd, __func__, py) != 0)
return;
if (grid_check_y(gd, __func__, py + ny - 1) != 0)
return;
for (yy = py; yy < py + ny; yy++) {
gl = &gd->linedata[yy];
sx = gd->sx;
if (sx > gl->cellsize)
sx = gl->cellsize;
ox = nx;
if (COLOUR_DEFAULT(bg)) {
if (px > sx)
continue;
if (px + nx > sx)
ox = sx - px;
}
grid_expand_line(gd, yy, px + ox, 8); /* default bg first */
for (xx = px; xx < px + ox; xx++)
grid_clear_cell(gd, xx, yy, bg);
}
}
/* Clear lines. This just frees and truncates the lines. */
void
grid_clear_lines(struct grid *gd, u_int py, u_int ny, u_int bg)
{
u_int yy;
if (ny == 0)
return;
if (grid_check_y(gd, __func__, py) != 0)
return;
if (grid_check_y(gd, __func__, py + ny - 1) != 0)
return;
for (yy = py; yy < py + ny; yy++) {
grid_free_line(gd, yy);
grid_empty_line(gd, yy, bg);
}
}
/* Move a group of lines. */
void
grid_move_lines(struct grid *gd, u_int dy, u_int py, u_int ny, u_int bg)
{
u_int yy;
if (ny == 0 || py == dy)
return;
if (grid_check_y(gd, __func__, py) != 0)
return;
if (grid_check_y(gd, __func__, py + ny - 1) != 0)
return;
if (grid_check_y(gd, __func__, dy) != 0)
return;
if (grid_check_y(gd, __func__, dy + ny - 1) != 0)
return;
/* Free any lines which are being replaced. */
for (yy = dy; yy < dy + ny; yy++) {
if (yy >= py && yy < py + ny)
continue;
grid_free_line(gd, yy);
}
memmove(&gd->linedata[dy], &gd->linedata[py],
ny * (sizeof *gd->linedata));
/*
* Wipe any lines that have been moved (without freeing them - they are
* still present).
*/
for (yy = py; yy < py + ny; yy++) {
if (yy < dy || yy >= dy + ny)
grid_empty_line(gd, yy, bg);
}
}
/* Move a group of cells. */
void
grid_move_cells(struct grid *gd, u_int dx, u_int px, u_int py, u_int nx,
u_int bg)
{
struct grid_line *gl;
u_int xx;
if (nx == 0 || px == dx)
return;
if (grid_check_y(gd, __func__, py) != 0)
return;
gl = &gd->linedata[py];
grid_expand_line(gd, py, px + nx, 8);
grid_expand_line(gd, py, dx + nx, 8);
memmove(&gl->celldata[dx], &gl->celldata[px],
nx * sizeof *gl->celldata);
if (dx + nx > gl->cellused)
gl->cellused = dx + nx;
/* Wipe any cells that have been moved. */
for (xx = px; xx < px + nx; xx++) {
if (xx >= dx && xx < dx + nx)
continue;
grid_clear_cell(gd, xx, py, bg);
}
}
/* Get ANSI foreground sequence. */
static size_t
grid_string_cells_fg(const struct grid_cell *gc, int *values)
{
size_t n;
u_char r, g, b;
n = 0;
if (gc->fg & COLOUR_FLAG_256) {
values[n++] = 38;
values[n++] = 5;
values[n++] = gc->fg & 0xff;
} else if (gc->fg & COLOUR_FLAG_RGB) {
values[n++] = 38;
values[n++] = 2;
colour_split_rgb(gc->fg, &r, &g, &b);
values[n++] = r;
values[n++] = g;
values[n++] = b;
} else {
switch (gc->fg) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
values[n++] = gc->fg + 30;
break;
case 8:
values[n++] = 39;
break;
case 90:
case 91:
case 92:
case 93:
case 94:
case 95:
case 96:
case 97:
values[n++] = gc->fg;
break;
}
}
return (n);
}
/* Get ANSI background sequence. */
static size_t
grid_string_cells_bg(const struct grid_cell *gc, int *values)
{
size_t n;
u_char r, g, b;
n = 0;
if (gc->bg & COLOUR_FLAG_256) {
values[n++] = 48;
values[n++] = 5;
values[n++] = gc->bg & 0xff;
} else if (gc->bg & COLOUR_FLAG_RGB) {
values[n++] = 48;
values[n++] = 2;
colour_split_rgb(gc->bg, &r, &g, &b);
values[n++] = r;
values[n++] = g;
values[n++] = b;
} else {
switch (gc->bg) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
values[n++] = gc->bg + 40;
break;
case 8:
values[n++] = 49;
break;
case 90:
case 91:
case 92:
case 93:
case 94:
case 95:
case 96:
case 97:
values[n++] = gc->bg + 10;
break;
}
}
return (n);
}
/*
* Returns ANSI code to set particular attributes (colour, bold and so on)
2017-05-16 12:57:26 +00:00
* given a current state.
*/
static void
grid_string_cells_code(const struct grid_cell *lastgc,
const struct grid_cell *gc, char *buf, size_t len, int escape_c0)
{
int oldc[64], newc[64], s[128];
size_t noldc, nnewc, n, i;
u_int attr = gc->attr, lastattr = lastgc->attr;
char tmp[64];
struct {
u_int mask;
u_int code;
} attrs[] = {
{ GRID_ATTR_BRIGHT, 1 },
{ GRID_ATTR_DIM, 2 },
{ GRID_ATTR_ITALICS, 3 },
{ GRID_ATTR_UNDERSCORE, 4 },
{ GRID_ATTR_BLINK, 5 },
{ GRID_ATTR_REVERSE, 7 },
{ GRID_ATTR_HIDDEN, 8 },
{ GRID_ATTR_STRIKETHROUGH, 9 },
{ GRID_ATTR_UNDERSCORE_2, 42 },
{ GRID_ATTR_UNDERSCORE_3, 43 },
{ GRID_ATTR_UNDERSCORE_4, 44 },
{ GRID_ATTR_UNDERSCORE_5, 45 },
{ GRID_ATTR_OVERLINE, 53 },
};
n = 0;
/* If any attribute is removed, begin with 0. */
for (i = 0; i < nitems(attrs); i++) {
if (!(attr & attrs[i].mask) && (lastattr & attrs[i].mask)) {
s[n++] = 0;
lastattr &= GRID_ATTR_CHARSET;
break;
}
}
/* For each attribute that is newly set, add its code. */
for (i = 0; i < nitems(attrs); i++) {
if ((attr & attrs[i].mask) && !(lastattr & attrs[i].mask))
s[n++] = attrs[i].code;
}
/* Write the attributes. */
*buf = '\0';
if (n > 0) {
if (escape_c0)
strlcat(buf, "\\033[", len);
else
strlcat(buf, "\033[", len);
for (i = 0; i < n; i++) {
if (s[i] < 10)
xsnprintf(tmp, sizeof tmp, "%d", s[i]);
else {
xsnprintf(tmp, sizeof tmp, "%d:%d", s[i] / 10,
s[i] % 10);
}
strlcat(buf, tmp, len);
if (i + 1 < n)
strlcat(buf, ";", len);
}
strlcat(buf, "m", len);
}
/* If the foreground colour changed, write its parameters. */
nnewc = grid_string_cells_fg(gc, newc);
noldc = grid_string_cells_fg(lastgc, oldc);
if (nnewc != noldc ||
memcmp(newc, oldc, nnewc * sizeof newc[0]) != 0 ||
(n != 0 && s[0] == 0)) {
if (escape_c0)
strlcat(buf, "\\033[", len);
else
strlcat(buf, "\033[", len);
for (i = 0; i < nnewc; i++) {
if (i + 1 < nnewc)
xsnprintf(tmp, sizeof tmp, "%d;", newc[i]);
else
xsnprintf(tmp, sizeof tmp, "%d", newc[i]);
strlcat(buf, tmp, len);
}
strlcat(buf, "m", len);
}
/* If the background colour changed, append its parameters. */
nnewc = grid_string_cells_bg(gc, newc);
noldc = grid_string_cells_bg(lastgc, oldc);
if (nnewc != noldc ||
memcmp(newc, oldc, nnewc * sizeof newc[0]) != 0 ||
(n != 0 && s[0] == 0)) {
if (escape_c0)
strlcat(buf, "\\033[", len);
else
strlcat(buf, "\033[", len);
for (i = 0; i < nnewc; i++) {
if (i + 1 < nnewc)
xsnprintf(tmp, sizeof tmp, "%d;", newc[i]);
else
xsnprintf(tmp, sizeof tmp, "%d", newc[i]);
strlcat(buf, tmp, len);
}
strlcat(buf, "m", len);
}
/* Append shift in/shift out if needed. */
if ((attr & GRID_ATTR_CHARSET) && !(lastattr & GRID_ATTR_CHARSET)) {
if (escape_c0)
strlcat(buf, "\\016", len); /* SO */
else
strlcat(buf, "\016", len); /* SO */
}
if (!(attr & GRID_ATTR_CHARSET) && (lastattr & GRID_ATTR_CHARSET)) {
if (escape_c0)
strlcat(buf, "\\017", len); /* SI */
else
strlcat(buf, "\017", len); /* SI */
}
}
/* Convert cells into a string. */
char *
grid_string_cells(struct grid *gd, u_int px, u_int py, u_int nx,
struct grid_cell **lastgc, int with_codes, int escape_c0, int trim)
{
struct grid_cell gc;
static struct grid_cell lastgc1;
2014-09-01 21:50:18 +00:00
const char *data;
char *buf, code[128];
size_t len, off, size, codelen;
u_int xx;
const struct grid_line *gl;
if (lastgc != NULL && *lastgc == NULL) {
memcpy(&lastgc1, &grid_default_cell, sizeof lastgc1);
*lastgc = &lastgc1;
}
len = 128;
buf = xmalloc(len);
off = 0;
gl = grid_peek_line(gd, py);
for (xx = px; xx < px + nx; xx++) {
if (gl == NULL || xx >= gl->cellsize)
break;
grid_get_cell(gd, xx, py, &gc);
if (gc.flags & GRID_FLAG_PADDING)
continue;
if (with_codes) {
grid_string_cells_code(*lastgc, &gc, code, sizeof code,
escape_c0);
codelen = strlen(code);
memcpy(*lastgc, &gc, sizeof **lastgc);
} else
codelen = 0;
data = gc.data.data;
size = gc.data.size;
if (escape_c0 && size == 1 && *data == '\\') {
data = "\\\\";
size = 2;
}
while (len < off + size + codelen + 1) {
buf = xreallocarray(buf, 2, len);
len *= 2;
}
if (codelen != 0) {
memcpy(buf + off, code, codelen);
off += codelen;
}
memcpy(buf + off, data, size);
off += size;
}
if (trim) {
while (off > 0 && buf[off - 1] == ' ')
off--;
}
buf[off] = '\0';
return (buf);
}
/*
* Duplicate a set of lines between two grids. Both source and destination
* should be big enough.
*/
void
2013-10-10 12:01:14 +00:00
grid_duplicate_lines(struct grid *dst, u_int dy, struct grid *src, u_int sy,
u_int ny)
{
struct grid_line *dstl, *srcl;
u_int yy;
if (dy + ny > dst->hsize + dst->sy)
ny = dst->hsize + dst->sy - dy;
if (sy + ny > src->hsize + src->sy)
ny = src->hsize + src->sy - sy;
grid_free_lines(dst, dy, ny);
for (yy = 0; yy < ny; yy++) {
srcl = &src->linedata[sy];
dstl = &dst->linedata[dy];
memcpy(dstl, srcl, sizeof *dstl);
if (srcl->cellsize != 0) {
dstl->celldata = xreallocarray(NULL,
srcl->cellsize, sizeof *dstl->celldata);
memcpy(dstl->celldata, srcl->celldata,
srcl->cellsize * sizeof *dstl->celldata);
} else
dstl->celldata = NULL;
if (srcl->extdsize != 0) {
dstl->extdsize = srcl->extdsize;
dstl->extddata = xreallocarray(NULL, dstl->extdsize,
sizeof *dstl->extddata);
memcpy(dstl->extddata, srcl->extddata, dstl->extdsize *
sizeof *dstl->extddata);
}
sy++;
dy++;
}
}
/* Mark line as dead. */
static void
grid_reflow_dead(struct grid_line *gl)
{
memset(gl, 0, sizeof *gl);
gl->flags = GRID_LINE_DEAD;
}
/* Add lines, return the first new one. */
static struct grid_line *
grid_reflow_add(struct grid *gd, u_int n)
{
struct grid_line *gl;
u_int sy = gd->sy + n;
gd->linedata = xreallocarray(gd->linedata, sy, sizeof *gd->linedata);
gl = &gd->linedata[gd->sy];
memset(gl, 0, n * (sizeof *gl));
gd->sy = sy;
return (gl);
}
/* Move a line across. */
static struct grid_line *
grid_reflow_move(struct grid *gd, struct grid_line *from)
{
struct grid_line *to;
to = grid_reflow_add(gd, 1);
memcpy(to, from, sizeof *to);
grid_reflow_dead(from);
return (to);
}
/* Join line below onto this one. */
static void
grid_reflow_join(struct grid *target, struct grid *gd, u_int sx, u_int yy,
u_int width, int already)
{
struct grid_line *gl, *from = NULL;
struct grid_cell gc;
u_int lines, left, i, to, line, want = 0;
u_int at;
int wrapped = 1;
/*
* Add a new target line.
*/
if (!already) {
to = target->sy;
gl = grid_reflow_move(target, &gd->linedata[yy]);
} else {
to = target->sy - 1;
gl = &target->linedata[to];
}
at = gl->cellused;
/*
* Loop until no more to consume or the target line is full.
*/
lines = 0;
for (;;) {
/*
* If this is now the last line, there is nothing more to be
* done.
*/
if (yy + 1 + lines == gd->hsize + gd->sy)
break;
line = yy + 1 + lines;
/* If the next line is empty, skip it. */
if (~gd->linedata[line].flags & GRID_LINE_WRAPPED)
wrapped = 0;
if (gd->linedata[line].cellused == 0) {
if (!wrapped)
break;
lines++;
continue;
}
/*
* Is the destination line now full? Copy the first character
* separately because we need to leave "from" set to the last
* line if this line is full.
*/
grid_get_cell1(&gd->linedata[line], 0, &gc);
if (width + gc.data.width > sx)
break;
width += gc.data.width;
grid_set_cell(target, at, to, &gc);
at++;
/* Join as much more as possible onto the current line. */
from = &gd->linedata[line];
for (want = 1; want < from->cellused; want++) {
grid_get_cell1(from, want, &gc);
if (width + gc.data.width > sx)
break;
width += gc.data.width;
grid_set_cell(target, at, to, &gc);
at++;
}
lines++;
/*
* If this line wasn't wrapped or we didn't consume the entire
* line, don't try to join any further lines.
*/
if (!wrapped || want != from->cellused || width == sx)
break;
}
if (lines == 0)
return;
/*
* If we didn't consume the entire final line, then remove what we did
* consume. If we consumed the entire line and it wasn't wrapped,
* remove the wrap flag from this line.
*/
left = from->cellused - want;
if (left != 0) {
grid_move_cells(gd, 0, want, yy + lines, left, 8);
from->cellsize = from->cellused = left;
lines--;
} else if (!wrapped)
gl->flags &= ~GRID_LINE_WRAPPED;
/* Remove the lines that were completely consumed. */
for (i = yy + 1; i < yy + 1 + lines; i++) {
free(gd->linedata[i].celldata);
free(gd->linedata[i].extddata);
grid_reflow_dead(&gd->linedata[i]);
}
/* Adjust scroll position. */
if (gd->hscrolled > to + lines)
gd->hscrolled -= lines;
else if (gd->hscrolled > to)
gd->hscrolled = to;
}
/* Split this line into several new ones */
static void
grid_reflow_split(struct grid *target, struct grid *gd, u_int sx, u_int yy,
u_int at)
{
struct grid_line *gl = &gd->linedata[yy], *first;
struct grid_cell gc;
u_int line, lines, width, i, xx;
u_int used = gl->cellused;
int flags = gl->flags;
/* How many lines do we need to insert? We know we need at least two. */
if (~gl->flags & GRID_LINE_EXTENDED)
lines = 1 + (gl->cellused - 1) / sx;
else {
lines = 2;
width = 0;
for (i = at; i < used; i++) {
grid_get_cell1(gl, i, &gc);
if (width + gc.data.width > sx) {
lines++;
width = 0;
}
width += gc.data.width;
}
}
/* Insert new lines. */
line = target->sy + 1;
first = grid_reflow_add(target, lines);
/* Copy sections from the original line. */
width = 0;
xx = 0;
for (i = at; i < used; i++) {
grid_get_cell1(gl, i, &gc);
if (width + gc.data.width > sx) {
target->linedata[line].flags |= GRID_LINE_WRAPPED;
line++;
width = 0;
xx = 0;
}
width += gc.data.width;
grid_set_cell(target, xx, line, &gc);
xx++;
}
if (flags & GRID_LINE_WRAPPED)
target->linedata[line].flags |= GRID_LINE_WRAPPED;
/* Move the remainder of the original line. */
gl->cellsize = gl->cellused = at;
gl->flags |= GRID_LINE_WRAPPED;
memcpy(first, gl, sizeof *first);
grid_reflow_dead(gl);
/* Adjust the scroll position. */
if (yy <= gd->hscrolled)
gd->hscrolled += lines - 1;
/*
* If the original line had the wrapped flag and there is still space
* in the last new line, try to join with the next lines.
*/
if (width < sx && (flags & GRID_LINE_WRAPPED))
grid_reflow_join(target, gd, sx, yy, width, 1);
}
/* Reflow lines on grid to new width. */
void
grid_reflow(struct grid *gd, u_int sx)
{
struct grid *target;
struct grid_line *gl;
struct grid_cell gc;
u_int yy, width, i, at, first;
/*
* Create a destination grid. This is just used as a container for the
* line data and may not be fully valid.
*/
target = grid_create(gd->sx, 0, 0);
/*
* Loop over each source line.
*/
for (yy = 0; yy < gd->hsize + gd->sy; yy++) {
gl = &gd->linedata[yy];
if (gl->flags & GRID_LINE_DEAD)
continue;
/*
* Work out the width of this line. first is the width of the
* first character, at is the point at which the available
* width is hit, and width is the full line width.
*/
first = at = width = 0;
if (~gl->flags & GRID_LINE_EXTENDED) {
first = 1;
width = gl->cellused;
if (width > sx)
at = sx;
else
at = width;
} else {
for (i = 0; i < gl->cellused; i++) {
grid_get_cell1(gl, i, &gc);
if (i == 0)
first = gc.data.width;
if (at == 0 && width + gc.data.width > sx)
at = i;
width += gc.data.width;
}
}
/*
* If the line is exactly right or the first character is wider
* than the targe width, just move it across unchanged.
*/
if (width == sx || first > sx) {
grid_reflow_move(target, gl);
continue;
}
/*
* If the line is too big, it needs to be split, whether or not
* it was previously wrapped.
*/
if (width > sx) {
grid_reflow_split(target, gd, sx, yy, at);
continue;
}
/*
* If the line was previously wrapped, join as much as possible
* of the next line.
*/
if (gl->flags & GRID_LINE_WRAPPED)
grid_reflow_join(target, gd, sx, yy, width, 0);
else
grid_reflow_move(target, gl);
}
/*
* Replace the old grid with the new.
*/
if (target->sy < gd->sy)
grid_reflow_add(target, gd->sy - target->sy);
gd->hsize = target->sy - gd->sy;
if (gd->hscrolled > gd->hsize)
gd->hscrolled = gd->hsize;
free(gd->linedata);
gd->linedata = target->linedata;
free(target);
}
/* Convert to position based on wrapped lines. */
void
grid_wrap_position(struct grid *gd, u_int px, u_int py, u_int *wx, u_int *wy)
{
u_int ax = 0, ay = 0, yy;
for (yy = 0; yy < py; yy++) {
if (gd->linedata[yy].flags & GRID_LINE_WRAPPED)
ax += gd->linedata[yy].cellused;
else {
ax = 0;
ay++;
}
}
if (px >= gd->linedata[yy].cellused)
ax = UINT_MAX;
else
ax += px;
*wx = ax;
*wy = ay;
}
/* Convert position based on wrapped lines back. */
void
grid_unwrap_position(struct grid *gd, u_int *px, u_int *py, u_int wx, u_int wy)
{
u_int yy, ax = 0, ay = 0;
for (yy = 0; yy < gd->hsize + gd->sy - 1; yy++) {
if (ay == wy)
break;
if (gd->linedata[yy].flags & GRID_LINE_WRAPPED)
ax += gd->linedata[yy].cellused;
else {
ax = 0;
ay++;
}
}
/*
* yy is now 0 on the unwrapped line which contains wx. Walk forwards
* until we find the end or the line now containing wx.
*/
if (wx == UINT_MAX) {
while (gd->linedata[yy].flags & GRID_LINE_WRAPPED)
yy++;
wx = gd->linedata[yy].cellused;
} else {
while (gd->linedata[yy].flags & GRID_LINE_WRAPPED) {
if (wx < gd->linedata[yy].cellused)
break;
wx -= gd->linedata[yy].cellused;
yy++;
}
}
*px = wx;
*py = yy;
}
/* Get length of line. */
u_int
grid_line_length(struct grid *gd, u_int py)
{
struct grid_cell gc;
u_int px;
px = grid_get_line(gd, py)->cellsize;
if (px > gd->sx)
px = gd->sx;
while (px > 0) {
grid_get_cell(gd, px - 1, py, &gc);
if (gc.data.size != 1 || *gc.data.data != ' ')
break;
px--;
}
return (px);
}