142 lines
4.7 KiB
Go
142 lines
4.7 KiB
Go
package excelize
|
|
|
|
import (
|
|
"math"
|
|
"time"
|
|
)
|
|
|
|
// timeLocationUTC defined the UTC time location.
|
|
var timeLocationUTC, _ = time.LoadLocation("UTC")
|
|
|
|
// timeToUTCTime provides a function to convert time to UTC time.
|
|
func timeToUTCTime(t time.Time) time.Time {
|
|
return time.Date(t.Year(), t.Month(), t.Day(), t.Hour(), t.Minute(), t.Second(), t.Nanosecond(), timeLocationUTC)
|
|
}
|
|
|
|
// timeToExcelTime provides a function to convert time to Excel time.
|
|
func timeToExcelTime(t time.Time) float64 {
|
|
// TODO in future this should probably also handle date1904 and like TimeFromExcelTime
|
|
var excelTime float64
|
|
var deltaDays int64
|
|
excelTime = 0
|
|
deltaDays = 290 * 364
|
|
// check if UnixNano would be out of int64 range
|
|
for t.Unix() > deltaDays*24*60*60 {
|
|
// reduce by aprox. 290 years, which is max for int64 nanoseconds
|
|
delta := time.Duration(deltaDays) * 24 * time.Hour
|
|
excelTime = excelTime + float64(deltaDays)
|
|
t = t.Add(-delta)
|
|
}
|
|
// finally add remainder of UnixNano to keep nano precision
|
|
// and 25569 which is days between 1900 and 1970
|
|
return excelTime + float64(t.UnixNano())/8.64e13 + 25569.0
|
|
}
|
|
|
|
// shiftJulianToNoon provides a function to process julian date to noon.
|
|
func shiftJulianToNoon(julianDays, julianFraction float64) (float64, float64) {
|
|
switch {
|
|
case -0.5 < julianFraction && julianFraction < 0.5:
|
|
julianFraction += 0.5
|
|
case julianFraction >= 0.5:
|
|
julianDays++
|
|
julianFraction -= 0.5
|
|
case julianFraction <= -0.5:
|
|
julianDays--
|
|
julianFraction += 1.5
|
|
}
|
|
return julianDays, julianFraction
|
|
}
|
|
|
|
// fractionOfADay provides a function to return the integer values for hour,
|
|
// minutes, seconds and nanoseconds that comprised a given fraction of a day.
|
|
// values would round to 1 us.
|
|
func fractionOfADay(fraction float64) (hours, minutes, seconds, nanoseconds int) {
|
|
|
|
const (
|
|
c1us = 1e3
|
|
c1s = 1e9
|
|
c1day = 24 * 60 * 60 * c1s
|
|
)
|
|
|
|
frac := int64(c1day*fraction + c1us/2)
|
|
nanoseconds = int((frac%c1s)/c1us) * c1us
|
|
frac /= c1s
|
|
seconds = int(frac % 60)
|
|
frac /= 60
|
|
minutes = int(frac % 60)
|
|
hours = int(frac / 60)
|
|
return
|
|
}
|
|
|
|
// julianDateToGregorianTime provides a function to convert julian date to
|
|
// gregorian time.
|
|
func julianDateToGregorianTime(part1, part2 float64) time.Time {
|
|
part1I, part1F := math.Modf(part1)
|
|
part2I, part2F := math.Modf(part2)
|
|
julianDays := part1I + part2I
|
|
julianFraction := part1F + part2F
|
|
julianDays, julianFraction = shiftJulianToNoon(julianDays, julianFraction)
|
|
day, month, year := doTheFliegelAndVanFlandernAlgorithm(int(julianDays))
|
|
hours, minutes, seconds, nanoseconds := fractionOfADay(julianFraction)
|
|
return time.Date(year, time.Month(month), day, hours, minutes, seconds, nanoseconds, time.UTC)
|
|
}
|
|
|
|
// By this point generations of programmers have repeated the algorithm sent
|
|
// to the editor of "Communications of the ACM" in 1968 (published in CACM,
|
|
// volume 11, number 10, October 1968, p.657). None of those programmers seems
|
|
// to have found it necessary to explain the constants or variable names set
|
|
// out by Henry F. Fliegel and Thomas C. Van Flandern. Maybe one day I'll buy
|
|
// that jounal and expand an explanation here - that day is not today.
|
|
func doTheFliegelAndVanFlandernAlgorithm(jd int) (day, month, year int) {
|
|
l := jd + 68569
|
|
n := (4 * l) / 146097
|
|
l = l - (146097*n+3)/4
|
|
i := (4000 * (l + 1)) / 1461001
|
|
l = l - (1461*i)/4 + 31
|
|
j := (80 * l) / 2447
|
|
d := l - (2447*j)/80
|
|
l = j / 11
|
|
m := j + 2 - (12 * l)
|
|
y := 100*(n-49) + i + l
|
|
return d, m, y
|
|
}
|
|
|
|
// timeFromExcelTime provides a function to convert an excelTime
|
|
// representation (stored as a floating point number) to a time.Time.
|
|
func timeFromExcelTime(excelTime float64, date1904 bool) time.Time {
|
|
const MDD int64 = 106750 // Max time.Duration Days, aprox. 290 years
|
|
var date time.Time
|
|
var intPart = int64(excelTime)
|
|
// Excel uses Julian dates prior to March 1st 1900, and Gregorian
|
|
// thereafter.
|
|
if intPart <= 61 {
|
|
const OFFSET1900 = 15018.0
|
|
const OFFSET1904 = 16480.0
|
|
const MJD0 float64 = 2400000.5
|
|
var date time.Time
|
|
if date1904 {
|
|
date = julianDateToGregorianTime(MJD0, excelTime+OFFSET1904)
|
|
} else {
|
|
date = julianDateToGregorianTime(MJD0, excelTime+OFFSET1900)
|
|
}
|
|
return date
|
|
}
|
|
var floatPart = excelTime - float64(intPart)
|
|
var dayNanoSeconds float64 = 24 * 60 * 60 * 1000 * 1000 * 1000
|
|
if date1904 {
|
|
date = time.Date(1904, 1, 1, 0, 0, 0, 0, time.UTC)
|
|
} else {
|
|
date = time.Date(1899, 12, 30, 0, 0, 0, 0, time.UTC)
|
|
}
|
|
|
|
// Duration is limited to aprox. 290 years
|
|
for intPart > MDD {
|
|
durationDays := time.Duration(MDD) * time.Hour * 24
|
|
date = date.Add(durationDays)
|
|
intPart = intPart - MDD
|
|
}
|
|
durationDays := time.Duration(intPart) * time.Hour * 24
|
|
durationPart := time.Duration(dayNanoSeconds * floatPart)
|
|
return date.Add(durationDays).Add(durationPart)
|
|
}
|