go-common/app/interface/main/creative/dao/drawimg/imgutil.go
2019-04-22 18:49:16 +08:00

559 lines
15 KiB
Go

package drawimg
import (
"errors"
"image"
"image/color"
"image/gif"
"image/jpeg"
"image/png"
"io"
"math"
"os"
"path/filepath"
"runtime"
"strings"
"sync"
"sync/atomic"
)
// Format is an image file format.
type Format int
// Image file formats.
const (
JPEG Format = iota
PNG
GIF
)
func (f Format) String() string {
switch f {
case JPEG:
return "JPEG"
case PNG:
return "PNG"
case GIF:
return "GIF"
default:
return "Unsupported"
}
}
var (
// ErrUnsupportedFormat means the given image format (or file extension) is unsupported.
ErrUnsupportedFormat = errors.New("imaging: unsupported image format")
)
// Decode reads an image from r.
func Decode(r io.Reader) (image.Image, error) {
img, _, err := image.Decode(r)
if err != nil {
return nil, err
}
return toNRGBA(img), nil
}
// Open loads an image from file
func Open(filename string) (image.Image, error) {
file, err := os.Open(filename)
if err != nil {
return nil, err
}
defer file.Close()
img, err := Decode(file)
return img, err
}
// Encode writes the image img to w in the specified format (JPEG, PNG, GIF, TIFF or BMP).
func Encode(w io.Writer, img image.Image, format Format) error {
var err error
switch format {
case JPEG:
var rgba *image.RGBA
if nrgba, ok := img.(*image.NRGBA); ok {
if nrgba.Opaque() {
rgba = &image.RGBA{
Pix: nrgba.Pix,
Stride: nrgba.Stride,
Rect: nrgba.Rect,
}
}
}
if rgba != nil {
err = jpeg.Encode(w, rgba, &jpeg.Options{Quality: 95})
} else {
err = jpeg.Encode(w, img, &jpeg.Options{Quality: 95})
}
case PNG:
err = png.Encode(w, img)
case GIF:
err = gif.Encode(w, img, &gif.Options{NumColors: 256})
default:
err = ErrUnsupportedFormat
}
return err
}
// Save saves the image to file with the specified filename.
// The format is determined from the filename extension: "jpg" (or "jpeg"), "png", "gif" are supported.
func Save(img image.Image, filename string) (err error) {
formats := map[string]Format{
".jpg": JPEG,
".jpeg": JPEG,
".png": PNG,
".gif": GIF,
}
ext := strings.ToLower(filepath.Ext(filename))
f, ok := formats[ext]
if !ok {
return ErrUnsupportedFormat
}
file, err := os.Create(filename)
if err != nil {
return err
}
defer file.Close()
return Encode(file, img, f)
}
// NewNRGBA creates a new image with the specified width and height, and fills it with the specified color.
func NewNRGBA(width, height int, fillColor color.Color) *image.NRGBA {
if width <= 0 || height <= 0 {
return &image.NRGBA{}
}
dst := image.NewNRGBA(image.Rect(0, 0, width, height))
c := color.NRGBAModel.Convert(fillColor).(color.NRGBA)
if c.R == 0 && c.G == 0 && c.B == 0 && c.A == 0 {
return dst
}
cs := []uint8{c.R, c.G, c.B, c.A}
// fill the first row
for x := 0; x < width; x++ {
copy(dst.Pix[x*4:(x+1)*4], cs)
}
// copy the first row to other rows
for y := 1; y < height; y++ {
copy(dst.Pix[y*dst.Stride:y*dst.Stride+width*4], dst.Pix[0:width*4])
}
return dst
}
// Clone returns a copy of the given image.
func Clone(img image.Image) *image.NRGBA {
srcBounds := img.Bounds()
srcMinX := srcBounds.Min.X
srcMinY := srcBounds.Min.Y
dstBounds := srcBounds.Sub(srcBounds.Min)
dstW := dstBounds.Dx()
dstH := dstBounds.Dy()
dst := image.NewNRGBA(dstBounds)
switch src := img.(type) {
case *image.NRGBA:
rowSize := srcBounds.Dx() * 4
parallel(dstH, func(partStart, partEnd int) {
for dstY := partStart; dstY < partEnd; dstY++ {
di := dst.PixOffset(0, dstY)
si := src.PixOffset(srcMinX, srcMinY+dstY)
copy(dst.Pix[di:di+rowSize], src.Pix[si:si+rowSize])
}
})
case *image.NRGBA64:
parallel(dstH, func(partStart, partEnd int) {
for dstY := partStart; dstY < partEnd; dstY++ {
di := dst.PixOffset(0, dstY)
si := src.PixOffset(srcMinX, srcMinY+dstY)
for dstX := 0; dstX < dstW; dstX++ {
dst.Pix[di+0] = src.Pix[si+0]
dst.Pix[di+1] = src.Pix[si+2]
dst.Pix[di+2] = src.Pix[si+4]
dst.Pix[di+3] = src.Pix[si+6]
di += 4
si += 8
}
}
})
case *image.RGBA:
parallel(dstH, func(partStart, partEnd int) {
for dstY := partStart; dstY < partEnd; dstY++ {
di := dst.PixOffset(0, dstY)
si := src.PixOffset(srcMinX, srcMinY+dstY)
for dstX := 0; dstX < dstW; dstX++ {
a := src.Pix[si+3]
dst.Pix[di+3] = a
switch a {
case 0:
dst.Pix[di+0] = 0
dst.Pix[di+1] = 0
dst.Pix[di+2] = 0
case 0xff:
dst.Pix[di+0] = src.Pix[si+0]
dst.Pix[di+1] = src.Pix[si+1]
dst.Pix[di+2] = src.Pix[si+2]
default:
var tmp uint16
tmp = uint16(src.Pix[si+0]) * 0xff / uint16(a)
dst.Pix[di+0] = uint8(tmp)
tmp = uint16(src.Pix[si+1]) * 0xff / uint16(a)
dst.Pix[di+1] = uint8(tmp)
tmp = uint16(src.Pix[si+2]) * 0xff / uint16(a)
dst.Pix[di+2] = uint8(tmp)
}
di += 4
si += 4
}
}
})
case *image.RGBA64:
parallel(dstH, func(partStart, partEnd int) {
for dstY := partStart; dstY < partEnd; dstY++ {
di := dst.PixOffset(0, dstY)
si := src.PixOffset(srcMinX, srcMinY+dstY)
for dstX := 0; dstX < dstW; dstX++ {
a := src.Pix[si+6]
dst.Pix[di+3] = a
switch a {
case 0:
dst.Pix[di+0] = 0
dst.Pix[di+1] = 0
dst.Pix[di+2] = 0
case 0xff:
dst.Pix[di+0] = src.Pix[si+0]
dst.Pix[di+1] = src.Pix[si+2]
dst.Pix[di+2] = src.Pix[si+4]
default:
var tmp uint16
tmp = uint16(src.Pix[si+0]) * 0xff / uint16(a)
dst.Pix[di+0] = uint8(tmp)
tmp = uint16(src.Pix[si+2]) * 0xff / uint16(a)
dst.Pix[di+1] = uint8(tmp)
tmp = uint16(src.Pix[si+4]) * 0xff / uint16(a)
dst.Pix[di+2] = uint8(tmp)
}
di += 4
si += 8
}
}
})
case *image.Gray:
parallel(dstH, func(partStart, partEnd int) {
for dstY := partStart; dstY < partEnd; dstY++ {
di := dst.PixOffset(0, dstY)
si := src.PixOffset(srcMinX, srcMinY+dstY)
for dstX := 0; dstX < dstW; dstX++ {
c := src.Pix[si]
dst.Pix[di+0] = c
dst.Pix[di+1] = c
dst.Pix[di+2] = c
dst.Pix[di+3] = 0xff
di += 4
si++
}
}
})
case *image.Gray16:
parallel(dstH, func(partStart, partEnd int) {
for dstY := partStart; dstY < partEnd; dstY++ {
di := dst.PixOffset(0, dstY)
si := src.PixOffset(srcMinX, srcMinY+dstY)
for dstX := 0; dstX < dstW; dstX++ {
c := src.Pix[si]
dst.Pix[di+0] = c
dst.Pix[di+1] = c
dst.Pix[di+2] = c
dst.Pix[di+3] = 0xff
di += 4
si += 2
}
}
})
case *image.YCbCr:
parallel(dstH, func(partStart, partEnd int) {
for dstY := partStart; dstY < partEnd; dstY++ {
di := dst.PixOffset(0, dstY)
for dstX := 0; dstX < dstW; dstX++ {
srcX := srcMinX + dstX
srcY := srcMinY + dstY
siy := src.YOffset(srcX, srcY)
sic := src.COffset(srcX, srcY)
r, g, b := color.YCbCrToRGB(src.Y[siy], src.Cb[sic], src.Cr[sic])
dst.Pix[di+0] = r
dst.Pix[di+1] = g
dst.Pix[di+2] = b
dst.Pix[di+3] = 0xff
di += 4
}
}
})
case *image.Paletted:
plen := len(src.Palette)
pnew := make([]color.NRGBA, plen)
for i := 0; i < plen; i++ {
pnew[i] = color.NRGBAModel.Convert(src.Palette[i]).(color.NRGBA)
}
parallel(dstH, func(partStart, partEnd int) {
for dstY := partStart; dstY < partEnd; dstY++ {
di := dst.PixOffset(0, dstY)
si := src.PixOffset(srcMinX, srcMinY+dstY)
for dstX := 0; dstX < dstW; dstX++ {
c := pnew[src.Pix[si]]
dst.Pix[di+0] = c.R
dst.Pix[di+1] = c.G
dst.Pix[di+2] = c.B
dst.Pix[di+3] = c.A
di += 4
si++
}
}
})
default:
parallel(dstH, func(partStart, partEnd int) {
for dstY := partStart; dstY < partEnd; dstY++ {
di := dst.PixOffset(0, dstY)
for dstX := 0; dstX < dstW; dstX++ {
c := color.NRGBAModel.Convert(img.At(srcMinX+dstX, srcMinY+dstY)).(color.NRGBA)
dst.Pix[di+0] = c.R
dst.Pix[di+1] = c.G
dst.Pix[di+2] = c.B
dst.Pix[di+3] = c.A
di += 4
}
}
})
}
return dst
}
// toNRGBA converts any image type to *image.NRGBA with min-point at (0, 0).
func toNRGBA(img image.Image) *image.NRGBA {
srcBounds := img.Bounds()
if srcBounds.Min.X == 0 && srcBounds.Min.Y == 0 {
if src0, ok := img.(*image.NRGBA); ok {
return src0
}
}
return Clone(img)
}
// AdjustFunc performs a gamma correction on the image and returns the adjusted image.
func AdjustFunc(img image.Image, fn func(c color.NRGBA) color.NRGBA) *image.NRGBA {
src := toNRGBA(img)
width := src.Bounds().Max.X
height := src.Bounds().Max.Y
dst := image.NewNRGBA(image.Rect(0, 0, width, height))
parallel(height, func(partStart, partEnd int) {
for y := partStart; y < partEnd; y++ {
for x := 0; x < width; x++ {
i := y*src.Stride + x*4
j := y*dst.Stride + x*4
r := src.Pix[i+0]
g := src.Pix[i+1]
b := src.Pix[i+2]
a := src.Pix[i+3]
c := fn(color.NRGBA{r, g, b, a})
dst.Pix[j+0] = c.R
dst.Pix[j+1] = c.G
dst.Pix[j+2] = c.B
dst.Pix[j+3] = c.A
}
}
})
return dst
}
// AdjustGamma performs a gamma correction on the image and returns the adjusted image.
// Gamma parameter must be positive. Gamma = 1.0 gives the original image.
// Gamma less than 1.0 darkens the image and gamma greater than 1.0 lightens it.
//
// Example:
//
// dstImage = imaging.AdjustGamma(srcImage, 0.7)
//
func AdjustGamma(img image.Image, gamma float64) *image.NRGBA {
e := 1.0 / math.Max(gamma, 0.0001)
lut := make([]uint8, 256)
for i := 0; i < 256; i++ {
lut[i] = clamp(math.Pow(float64(i)/255.0, e) * 255.0)
}
fn := func(c color.NRGBA) color.NRGBA {
return color.NRGBA{lut[c.R], lut[c.G], lut[c.B], c.A}
}
return AdjustFunc(img, fn)
}
func sigmoid(a, b, x float64) float64 {
return 1 / (1 + math.Exp(b*(a-x)))
}
// AdjustSigmoid changes the contrast of the image using a sigmoidal function and returns the adjusted image.
// It's a non-linear contrast change useful for photo adjustments as it preserves highlight and shadow detail.
// The midpoint parameter is the midpoint of contrast that must be between 0 and 1, typically 0.5.
// The factor parameter indicates how much to increase or decrease the contrast, typically in range (-10, 10).
// If the factor parameter is positive the image contrast is increased otherwise the contrast is decreased.
//
// Examples:
//
// dstImage = imaging.AdjustSigmoid(srcImage, 0.5, 3.0) // increase the contrast
// dstImage = imaging.AdjustSigmoid(srcImage, 0.5, -3.0) // decrease the contrast
//
func AdjustSigmoid(img image.Image, midpoint, factor float64) *image.NRGBA {
if factor == 0 {
return Clone(img)
}
lut := make([]uint8, 256)
a := math.Min(math.Max(midpoint, 0.0), 1.0)
b := math.Abs(factor)
sig0 := sigmoid(a, b, 0)
sig1 := sigmoid(a, b, 1)
e := 1.0e-6
if factor > 0 {
for i := 0; i < 256; i++ {
x := float64(i) / 255.0
sigX := sigmoid(a, b, x)
f := (sigX - sig0) / (sig1 - sig0)
lut[i] = clamp(f * 255.0)
}
} else {
for i := 0; i < 256; i++ {
x := float64(i) / 255.0
arg := math.Min(math.Max((sig1-sig0)*x+sig0, e), 1.0-e)
f := a - math.Log(1.0/arg-1.0)/b
lut[i] = clamp(f * 255.0)
}
}
fn := func(c color.NRGBA) color.NRGBA {
return color.NRGBA{lut[c.R], lut[c.G], lut[c.B], c.A}
}
return AdjustFunc(img, fn)
}
// AdjustContrast changes the contrast of the image using the percentage parameter and returns the adjusted image.
// The percentage must be in range (-100, 100). The percentage = 0 gives the original image.
// The percentage = -100 gives solid grey image.
//
// Examples:
//
// dstImage = imaging.AdjustContrast(srcImage, -10) // decrease image contrast by 10%
// dstImage = imaging.AdjustContrast(srcImage, 20) // increase image contrast by 20%
//
func AdjustContrast(img image.Image, percentage float64) *image.NRGBA {
percentage = math.Min(math.Max(percentage, -100.0), 100.0)
lut := make([]uint8, 256)
v := (100.0 + percentage) / 100.0
for i := 0; i < 256; i++ {
if 0 <= v && v <= 1 {
lut[i] = clamp((0.5 + (float64(i)/255.0-0.5)*v) * 255.0)
} else if 1 < v && v < 2 {
lut[i] = clamp((0.5 + (float64(i)/255.0-0.5)*(1/(2.0-v))) * 255.0)
} else {
lut[i] = uint8(float64(i)/255.0+0.5) * 255
}
}
fn := func(c color.NRGBA) color.NRGBA {
return color.NRGBA{lut[c.R], lut[c.G], lut[c.B], c.A}
}
return AdjustFunc(img, fn)
}
// AdjustBrightness changes the brightness of the image using the percentage parameter and returns the adjusted image.
// The percentage must be in range (-100, 100). The percentage = 0 gives the original image.
// The percentage = -100 gives solid black image. The percentage = 100 gives solid white image.
//
// Examples:
//
// dstImage = imaging.AdjustBrightness(srcImage, -15) // decrease image brightness by 15%
// dstImage = imaging.AdjustBrightness(srcImage, 10) // increase image brightness by 10%
//
func AdjustBrightness(img image.Image, percentage float64) *image.NRGBA {
percentage = math.Min(math.Max(percentage, -100.0), 100.0)
lut := make([]uint8, 256)
shift := 255.0 * percentage / 100.0
for i := 0; i < 256; i++ {
lut[i] = clamp(float64(i) + shift)
}
fn := func(c color.NRGBA) color.NRGBA {
return color.NRGBA{lut[c.R], lut[c.G], lut[c.B], c.A}
}
return AdjustFunc(img, fn)
}
// Grayscale produces grayscale version of the image.
func Grayscale(img image.Image) *image.NRGBA {
fn := func(c color.NRGBA) color.NRGBA {
f := 0.299*float64(c.R) + 0.587*float64(c.G) + 0.114*float64(c.B)
y := uint8(f + 0.5)
return color.NRGBA{y, y, y, c.A}
}
return AdjustFunc(img, fn)
}
// Invert produces inverted (negated) version of the image.
func Invert(img image.Image) *image.NRGBA {
fn := func(c color.NRGBA) color.NRGBA {
return color.NRGBA{255 - c.R, 255 - c.G, 255 - c.B, c.A}
}
return AdjustFunc(img, fn)
}
// parallel starts parallel image processing based on the current GOMAXPROCS value.
// If GOMAXPROCS = 1 it uses no parallelization.
// If GOMAXPROCS > 1 it spawns N=GOMAXPROCS workers in separate goroutines.
func parallel(dataSize int, fn func(partStart, partEnd int)) {
numGoroutines := 1
partSize := dataSize
numProcs := runtime.GOMAXPROCS(0)
if numProcs > 1 {
numGoroutines = numProcs
partSize = dataSize / (numGoroutines * 10)
if partSize < 1 {
partSize = 1
}
}
if numGoroutines == 1 {
fn(0, dataSize)
} else {
var wg sync.WaitGroup
wg.Add(numGoroutines)
idx := uint64(0)
for p := 0; p < numGoroutines; p++ {
go func() {
defer wg.Done()
for {
partStart := int(atomic.AddUint64(&idx, uint64(partSize))) - partSize
if partStart >= dataSize {
break
}
partEnd := partStart + partSize
if partEnd > dataSize {
partEnd = dataSize
}
fn(partStart, partEnd)
}
}()
}
wg.Wait()
}
}
// absint returns the absolute value of i.
func absint(i int) int {
if i < 0 {
return -i
}
return i
}
// clamp rounds and clamps float64 value to fit into uint8.
func clamp(x float64) uint8 {
v := int64(x + 0.5)
if v > 255 {
return 255
}
if v > 0 {
return uint8(v)
}
return 0
}