go-common/vendor/code.google.com/p/graphics-go/graphics/affine.go

175 lines
4.3 KiB
Go

// Copyright 2011 The Graphics-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package graphics
import (
"code.google.com/p/graphics-go/graphics/interp"
"errors"
"image"
"image/draw"
"math"
)
// I is the identity Affine transform matrix.
var I = Affine{
1, 0, 0,
0, 1, 0,
0, 0, 1,
}
// Affine is a 3x3 2D affine transform matrix.
// M(i,j) is Affine[i*3+j].
type Affine [9]float64
// Mul returns the multiplication of two affine transform matrices.
func (a Affine) Mul(b Affine) Affine {
return Affine{
a[0]*b[0] + a[1]*b[3] + a[2]*b[6],
a[0]*b[1] + a[1]*b[4] + a[2]*b[7],
a[0]*b[2] + a[1]*b[5] + a[2]*b[8],
a[3]*b[0] + a[4]*b[3] + a[5]*b[6],
a[3]*b[1] + a[4]*b[4] + a[5]*b[7],
a[3]*b[2] + a[4]*b[5] + a[5]*b[8],
a[6]*b[0] + a[7]*b[3] + a[8]*b[6],
a[6]*b[1] + a[7]*b[4] + a[8]*b[7],
a[6]*b[2] + a[7]*b[5] + a[8]*b[8],
}
}
func (a Affine) transformRGBA(dst *image.RGBA, src *image.RGBA, i interp.RGBA) error {
srcb := src.Bounds()
b := dst.Bounds()
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
sx, sy := a.pt(x, y)
if inBounds(srcb, sx, sy) {
c := i.RGBA(src, sx, sy)
off := (y-dst.Rect.Min.Y)*dst.Stride + (x-dst.Rect.Min.X)*4
dst.Pix[off+0] = c.R
dst.Pix[off+1] = c.G
dst.Pix[off+2] = c.B
dst.Pix[off+3] = c.A
}
}
}
return nil
}
// Transform applies the affine transform to src and produces dst.
func (a Affine) Transform(dst draw.Image, src image.Image, i interp.Interp) error {
if dst == nil {
return errors.New("graphics: dst is nil")
}
if src == nil {
return errors.New("graphics: src is nil")
}
// RGBA fast path.
dstRGBA, dstOk := dst.(*image.RGBA)
srcRGBA, srcOk := src.(*image.RGBA)
interpRGBA, interpOk := i.(interp.RGBA)
if dstOk && srcOk && interpOk {
return a.transformRGBA(dstRGBA, srcRGBA, interpRGBA)
}
srcb := src.Bounds()
b := dst.Bounds()
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
sx, sy := a.pt(x, y)
if inBounds(srcb, sx, sy) {
dst.Set(x, y, i.Interp(src, sx, sy))
}
}
}
return nil
}
func inBounds(b image.Rectangle, x, y float64) bool {
if x < float64(b.Min.X) || x >= float64(b.Max.X) {
return false
}
if y < float64(b.Min.Y) || y >= float64(b.Max.Y) {
return false
}
return true
}
func (a Affine) pt(x0, y0 int) (x1, y1 float64) {
fx := float64(x0) + 0.5
fy := float64(y0) + 0.5
x1 = fx*a[0] + fy*a[1] + a[2]
y1 = fx*a[3] + fy*a[4] + a[5]
return x1, y1
}
// TransformCenter applies the affine transform to src and produces dst.
// Equivalent to
// a.CenterFit(dst, src).Transform(dst, src, i).
func (a Affine) TransformCenter(dst draw.Image, src image.Image, i interp.Interp) error {
if dst == nil {
return errors.New("graphics: dst is nil")
}
if src == nil {
return errors.New("graphics: src is nil")
}
return a.CenterFit(dst.Bounds(), src.Bounds()).Transform(dst, src, i)
}
// Scale produces a scaling transform of factors x and y.
func (a Affine) Scale(x, y float64) Affine {
return a.Mul(Affine{
1 / x, 0, 0,
0, 1 / y, 0,
0, 0, 1,
})
}
// Rotate produces a clockwise rotation transform of angle, in radians.
func (a Affine) Rotate(angle float64) Affine {
s, c := math.Sincos(angle)
return a.Mul(Affine{
+c, +s, +0,
-s, +c, +0,
+0, +0, +1,
})
}
// Shear produces a shear transform by the slopes x and y.
func (a Affine) Shear(x, y float64) Affine {
d := 1 - x*y
return a.Mul(Affine{
+1 / d, -x / d, 0,
-y / d, +1 / d, 0,
0, 0, 1,
})
}
// Translate produces a translation transform with pixel distances x and y.
func (a Affine) Translate(x, y float64) Affine {
return a.Mul(Affine{
1, 0, -x,
0, 1, -y,
0, 0, +1,
})
}
// Center produces the affine transform, centered around the provided point.
func (a Affine) Center(x, y float64) Affine {
return I.Translate(-x, -y).Mul(a).Translate(x, y)
}
// CenterFit produces the affine transform, centered around the rectangles.
// It is equivalent to
// I.Translate(-<center of src>).Mul(a).Translate(<center of dst>)
func (a Affine) CenterFit(dst, src image.Rectangle) Affine {
dx := float64(dst.Min.X) + float64(dst.Dx())/2
dy := float64(dst.Min.Y) + float64(dst.Dy())/2
sx := float64(src.Min.X) + float64(src.Dx())/2
sy := float64(src.Min.Y) + float64(src.Dy())/2
return I.Translate(-sx, -sy).Mul(a).Translate(dx, dy)
}