go-common/vendor/code.google.com/p/graphics-go/graphics/convolve/convolve.go

275 lines
6.4 KiB
Go
Raw Normal View History

2019-04-22 10:49:16 +00:00
// Copyright 2011 The Graphics-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package convolve
import (
"errors"
"fmt"
"image"
"image/draw"
"math"
)
// clamp clamps x to the range [x0, x1].
func clamp(x, x0, x1 float64) float64 {
if x < x0 {
return x0
}
if x > x1 {
return x1
}
return x
}
// Kernel is a square matrix that defines a convolution.
type Kernel interface {
// Weights returns the square matrix of weights in row major order.
Weights() []float64
}
// SeparableKernel is a linearly separable, square convolution kernel.
// X and Y are the per-axis weights. Each slice must be the same length, and
// have an odd length. The middle element of each slice is the weight for the
// central pixel. For example, the horizontal Sobel kernel is:
// sobelX := &SeparableKernel{
// X: []float64{-1, 0, +1},
// Y: []float64{1, 2, 1},
// }
type SeparableKernel struct {
X, Y []float64
}
func (k *SeparableKernel) Weights() []float64 {
n := len(k.X)
w := make([]float64, n*n)
for y := 0; y < n; y++ {
for x := 0; x < n; x++ {
w[y*n+x] = k.X[x] * k.Y[y]
}
}
return w
}
// fullKernel is a square convolution kernel.
type fullKernel []float64
func (k fullKernel) Weights() []float64 { return k }
func kernelSize(w []float64) (size int, err error) {
size = int(math.Sqrt(float64(len(w))))
if size*size != len(w) {
return 0, errors.New("graphics: kernel is not square")
}
if size%2 != 1 {
return 0, errors.New("graphics: kernel size is not odd")
}
return size, nil
}
// NewKernel returns a square convolution kernel.
func NewKernel(w []float64) (Kernel, error) {
if _, err := kernelSize(w); err != nil {
return nil, err
}
return fullKernel(w), nil
}
func convolveRGBASep(dst *image.RGBA, src image.Image, k *SeparableKernel) error {
if len(k.X) != len(k.Y) {
return fmt.Errorf("graphics: kernel not square (x %d, y %d)", len(k.X), len(k.Y))
}
if len(k.X)%2 != 1 {
return fmt.Errorf("graphics: kernel length (%d) not odd", len(k.X))
}
radius := (len(k.X) - 1) / 2
// buf holds the result of vertically blurring src.
bounds := dst.Bounds()
width, height := bounds.Dx(), bounds.Dy()
buf := make([]float64, width*height*4)
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
var r, g, b, a float64
// k0 is the kernel weight for the center pixel. This may be greater
// than kernel[0], near the boundary of the source image, to avoid
// vignetting.
k0 := k.X[radius]
// Add the pixels from above.
for i := 1; i <= radius; i++ {
f := k.Y[radius-i]
if y-i < bounds.Min.Y {
k0 += f
} else {
or, og, ob, oa := src.At(x, y-i).RGBA()
r += float64(or>>8) * f
g += float64(og>>8) * f
b += float64(ob>>8) * f
a += float64(oa>>8) * f
}
}
// Add the pixels from below.
for i := 1; i <= radius; i++ {
f := k.Y[radius+i]
if y+i >= bounds.Max.Y {
k0 += f
} else {
or, og, ob, oa := src.At(x, y+i).RGBA()
r += float64(or>>8) * f
g += float64(og>>8) * f
b += float64(ob>>8) * f
a += float64(oa>>8) * f
}
}
// Add the central pixel.
or, og, ob, oa := src.At(x, y).RGBA()
r += float64(or>>8) * k0
g += float64(og>>8) * k0
b += float64(ob>>8) * k0
a += float64(oa>>8) * k0
// Write to buf.
o := (y-bounds.Min.Y)*width*4 + (x-bounds.Min.X)*4
buf[o+0] = r
buf[o+1] = g
buf[o+2] = b
buf[o+3] = a
}
}
// dst holds the result of horizontally blurring buf.
for y := 0; y < height; y++ {
for x := 0; x < width; x++ {
var r, g, b, a float64
k0, off := k.X[radius], y*width*4+x*4
// Add the pixels from the left.
for i := 1; i <= radius; i++ {
f := k.X[radius-i]
if x-i < 0 {
k0 += f
} else {
o := off - i*4
r += buf[o+0] * f
g += buf[o+1] * f
b += buf[o+2] * f
a += buf[o+3] * f
}
}
// Add the pixels from the right.
for i := 1; i <= radius; i++ {
f := k.X[radius+i]
if x+i >= width {
k0 += f
} else {
o := off + i*4
r += buf[o+0] * f
g += buf[o+1] * f
b += buf[o+2] * f
a += buf[o+3] * f
}
}
// Add the central pixel.
r += buf[off+0] * k0
g += buf[off+1] * k0
b += buf[off+2] * k0
a += buf[off+3] * k0
// Write to dst, clamping to the range [0, 255].
dstOff := (y-dst.Rect.Min.Y)*dst.Stride + (x-dst.Rect.Min.X)*4
dst.Pix[dstOff+0] = uint8(clamp(r+0.5, 0, 255))
dst.Pix[dstOff+1] = uint8(clamp(g+0.5, 0, 255))
dst.Pix[dstOff+2] = uint8(clamp(b+0.5, 0, 255))
dst.Pix[dstOff+3] = uint8(clamp(a+0.5, 0, 255))
}
}
return nil
}
func convolveRGBA(dst *image.RGBA, src image.Image, k Kernel) error {
b := dst.Bounds()
bs := src.Bounds()
w := k.Weights()
size, err := kernelSize(w)
if err != nil {
return err
}
radius := (size - 1) / 2
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
if !image.Pt(x, y).In(bs) {
continue
}
var r, g, b, a, adj float64
for cy := y - radius; cy <= y+radius; cy++ {
for cx := x - radius; cx <= x+radius; cx++ {
factor := w[(cy-y+radius)*size+cx-x+radius]
if !image.Pt(cx, cy).In(bs) {
adj += factor
} else {
sr, sg, sb, sa := src.At(cx, cy).RGBA()
r += float64(sr>>8) * factor
g += float64(sg>>8) * factor
b += float64(sb>>8) * factor
a += float64(sa>>8) * factor
}
}
}
if adj != 0 {
sr, sg, sb, sa := src.At(x, y).RGBA()
r += float64(sr>>8) * adj
g += float64(sg>>8) * adj
b += float64(sb>>8) * adj
a += float64(sa>>8) * adj
}
off := (y-dst.Rect.Min.Y)*dst.Stride + (x-dst.Rect.Min.X)*4
dst.Pix[off+0] = uint8(clamp(r+0.5, 0, 0xff))
dst.Pix[off+1] = uint8(clamp(g+0.5, 0, 0xff))
dst.Pix[off+2] = uint8(clamp(b+0.5, 0, 0xff))
dst.Pix[off+3] = uint8(clamp(a+0.5, 0, 0xff))
}
}
return nil
}
// Convolve produces dst by applying the convolution kernel k to src.
func Convolve(dst draw.Image, src image.Image, k Kernel) (err error) {
if dst == nil || src == nil || k == nil {
return nil
}
b := dst.Bounds()
dstRgba, ok := dst.(*image.RGBA)
if !ok {
dstRgba = image.NewRGBA(b)
}
switch k := k.(type) {
case *SeparableKernel:
err = convolveRGBASep(dstRgba, src, k)
default:
err = convolveRGBA(dstRgba, src, k)
}
if err != nil {
return err
}
if !ok {
draw.Draw(dst, b, dstRgba, b.Min, draw.Src)
}
return nil
}