go-common/vendor/code.google.com/p/graphics-go/graphics/detect/integral.go

94 lines
2.1 KiB
Go
Raw Permalink Normal View History

2019-04-22 10:49:16 +00:00
// Copyright 2011 The Graphics-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package detect
import (
"image"
"image/draw"
)
// integral is an image.Image-like structure that stores the cumulative
// sum of the preceding pixels. This allows for O(1) summation of any
// rectangular region within the image.
type integral struct {
// pix holds the cumulative sum of the image's pixels. The pixel at
// (x, y) starts at pix[(y-rect.Min.Y)*stride + (x-rect.Min.X)*1].
pix []uint64
stride int
rect image.Rectangle
}
func (p *integral) at(x, y int) uint64 {
return p.pix[(y-p.rect.Min.Y)*p.stride+(x-p.rect.Min.X)]
}
func (p *integral) sum(b image.Rectangle) uint64 {
c := p.at(b.Max.X-1, b.Max.Y-1)
inY := b.Min.Y > p.rect.Min.Y
inX := b.Min.X > p.rect.Min.X
if inY && inX {
c += p.at(b.Min.X-1, b.Min.Y-1)
}
if inY {
c -= p.at(b.Max.X-1, b.Min.Y-1)
}
if inX {
c -= p.at(b.Min.X-1, b.Max.Y-1)
}
return c
}
func (m *integral) integrate() {
b := m.rect
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
c := uint64(0)
if y > b.Min.Y && x > b.Min.X {
c += m.at(x-1, y)
c += m.at(x, y-1)
c -= m.at(x-1, y-1)
} else if y > b.Min.Y {
c += m.at(b.Min.X, y-1)
} else if x > b.Min.X {
c += m.at(x-1, b.Min.Y)
}
m.pix[(y-m.rect.Min.Y)*m.stride+(x-m.rect.Min.X)] += c
}
}
}
// newIntegrals returns the integral and the squared integral.
func newIntegrals(src image.Image) (*integral, *integral) {
b := src.Bounds()
srcg, ok := src.(*image.Gray)
if !ok {
srcg = image.NewGray(b)
draw.Draw(srcg, b, src, b.Min, draw.Src)
}
m := integral{
pix: make([]uint64, b.Max.Y*b.Max.X),
stride: b.Max.X,
rect: b,
}
mSq := integral{
pix: make([]uint64, b.Max.Y*b.Max.X),
stride: b.Max.X,
rect: b,
}
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
os := (y-b.Min.Y)*srcg.Stride + x - b.Min.X
om := (y-b.Min.Y)*m.stride + x - b.Min.X
c := uint64(srcg.Pix[os])
m.pix[om] = c
mSq.pix[om] = c * c
}
}
m.integrate()
mSq.integrate()
return &m, &mSq
}