Update sys/queue.h from OpenBSD.

This commit is contained in:
Nicholas Marriott 2017-02-06 10:05:56 +00:00
parent e1c283325e
commit c7c1018e9b
2 changed files with 116 additions and 145 deletions

View File

@ -1,4 +1,4 @@
/* $OpenBSD: queue.h,v 1.36 2012/04/11 13:29:14 naddy Exp $ */ /* $OpenBSD: queue.h,v 1.44 2016/09/09 20:31:46 millert Exp $ */
/* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */ /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
/* /*
@ -36,8 +36,8 @@
#define _SYS_QUEUE_H_ #define _SYS_QUEUE_H_
/* /*
* This file defines five types of data structures: singly-linked lists, * This file defines five types of data structures: singly-linked lists,
* lists, simple queues, tail queues, and circular queues. * lists, simple queues, tail queues and XOR simple queues.
* *
* *
* A singly-linked list is headed by a single forward pointer. The elements * A singly-linked list is headed by a single forward pointer. The elements
@ -57,7 +57,7 @@
* or after an existing element or at the head of the list. A list * or after an existing element or at the head of the list. A list
* may only be traversed in the forward direction. * may only be traversed in the forward direction.
* *
* A simple queue is headed by a pair of pointers, one the head of the * A simple queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are singly * list and the other to the tail of the list. The elements are singly
* linked to save space, so elements can only be removed from the * linked to save space, so elements can only be removed from the
* head of the list. New elements can be added to the list before or after * head of the list. New elements can be added to the list before or after
@ -71,13 +71,10 @@
* after an existing element, at the head of the list, or at the end of * after an existing element, at the head of the list, or at the end of
* the list. A tail queue may be traversed in either direction. * the list. A tail queue may be traversed in either direction.
* *
* A circle queue is headed by a pair of pointers, one to the head of the * An XOR simple queue is used in the same way as a regular simple queue.
* list and the other to the tail of the list. The elements are doubly * The difference is that the head structure also includes a "cookie" that
* linked so that an arbitrary element can be removed without a need to * is XOR'd with the queue pointer (first, last or next) to generate the
* traverse the list. New elements can be added to the list before or after * real pointer value.
* an existing element, at the head of the list, or at the end of the list.
* A circle queue may be traversed in either direction, but has a more
* complex end of list detection.
* *
* For details on the use of these macros, see the queue(3) manual page. * For details on the use of these macros, see the queue(3) manual page.
*/ */
@ -95,15 +92,15 @@
struct name { \ struct name { \
struct type *slh_first; /* first element */ \ struct type *slh_first; /* first element */ \
} }
#define SLIST_HEAD_INITIALIZER(head) \ #define SLIST_HEAD_INITIALIZER(head) \
{ NULL } { NULL }
#define SLIST_ENTRY(type) \ #define SLIST_ENTRY(type) \
struct { \ struct { \
struct type *sle_next; /* next element */ \ struct type *sle_next; /* next element */ \
} }
/* /*
* Singly-linked List access methods. * Singly-linked List access methods.
*/ */
@ -157,8 +154,8 @@ struct { \
curelm = curelm->field.sle_next; \ curelm = curelm->field.sle_next; \
curelm->field.sle_next = \ curelm->field.sle_next = \
curelm->field.sle_next->field.sle_next; \ curelm->field.sle_next->field.sle_next; \
_Q_INVALIDATE((elm)->field.sle_next); \
} \ } \
_Q_INVALIDATE((elm)->field.sle_next); \
} while (0) } while (0)
/* /*
@ -179,7 +176,7 @@ struct { \
} }
/* /*
* List access methods * List access methods.
*/ */
#define LIST_FIRST(head) ((head)->lh_first) #define LIST_FIRST(head) ((head)->lh_first)
#define LIST_END(head) NULL #define LIST_END(head) NULL
@ -316,6 +313,94 @@ struct { \
(head)->sqh_last = &(elm)->field.sqe_next; \ (head)->sqh_last = &(elm)->field.sqe_next; \
} while (0) } while (0)
#define SIMPLEQ_CONCAT(head1, head2) do { \
if (!SIMPLEQ_EMPTY((head2))) { \
*(head1)->sqh_last = (head2)->sqh_first; \
(head1)->sqh_last = (head2)->sqh_last; \
SIMPLEQ_INIT((head2)); \
} \
} while (0)
/*
* XOR Simple queue definitions.
*/
#define XSIMPLEQ_HEAD(name, type) \
struct name { \
struct type *sqx_first; /* first element */ \
struct type **sqx_last; /* addr of last next element */ \
unsigned long sqx_cookie; \
}
#define XSIMPLEQ_ENTRY(type) \
struct { \
struct type *sqx_next; /* next element */ \
}
/*
* XOR Simple queue access methods.
*/
#define XSIMPLEQ_XOR(head, ptr) ((__typeof(ptr))((head)->sqx_cookie ^ \
(unsigned long)(ptr)))
#define XSIMPLEQ_FIRST(head) XSIMPLEQ_XOR(head, ((head)->sqx_first))
#define XSIMPLEQ_END(head) NULL
#define XSIMPLEQ_EMPTY(head) (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head))
#define XSIMPLEQ_NEXT(head, elm, field) XSIMPLEQ_XOR(head, ((elm)->field.sqx_next))
#define XSIMPLEQ_FOREACH(var, head, field) \
for ((var) = XSIMPLEQ_FIRST(head); \
(var) != XSIMPLEQ_END(head); \
(var) = XSIMPLEQ_NEXT(head, var, field))
#define XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = XSIMPLEQ_FIRST(head); \
(var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1); \
(var) = (tvar))
/*
* XOR Simple queue functions.
*/
#define XSIMPLEQ_INIT(head) do { \
arc4random_buf(&(head)->sqx_cookie, sizeof((head)->sqx_cookie)); \
(head)->sqx_first = XSIMPLEQ_XOR(head, NULL); \
(head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
} while (0)
#define XSIMPLEQ_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.sqx_next = (head)->sqx_first) == \
XSIMPLEQ_XOR(head, NULL)) \
(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
(head)->sqx_first = XSIMPLEQ_XOR(head, (elm)); \
} while (0)
#define XSIMPLEQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL); \
*(XSIMPLEQ_XOR(head, (head)->sqx_last)) = XSIMPLEQ_XOR(head, (elm)); \
(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
} while (0)
#define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
if (((elm)->field.sqx_next = (listelm)->field.sqx_next) == \
XSIMPLEQ_XOR(head, NULL)) \
(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
(listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm)); \
} while (0)
#define XSIMPLEQ_REMOVE_HEAD(head, field) do { \
if (((head)->sqx_first = XSIMPLEQ_XOR(head, \
(head)->sqx_first)->field.sqx_next) == XSIMPLEQ_XOR(head, NULL)) \
(head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
} while (0)
#define XSIMPLEQ_REMOVE_AFTER(head, elm, field) do { \
if (((elm)->field.sqx_next = XSIMPLEQ_XOR(head, \
(elm)->field.sqx_next)->field.sqx_next) \
== XSIMPLEQ_XOR(head, NULL)) \
(head)->sqx_last = \
XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
} while (0)
/* /*
* Tail queue definitions. * Tail queue definitions.
*/ */
@ -334,8 +419,8 @@ struct { \
struct type **tqe_prev; /* address of previous next element */ \ struct type **tqe_prev; /* address of previous next element */ \
} }
/* /*
* tail queue access methods * Tail queue access methods.
*/ */
#define TAILQ_FIRST(head) ((head)->tqh_first) #define TAILQ_FIRST(head) ((head)->tqh_first)
#define TAILQ_END(head) NULL #define TAILQ_END(head) NULL
@ -436,133 +521,13 @@ struct { \
_Q_INVALIDATE((elm)->field.tqe_next); \ _Q_INVALIDATE((elm)->field.tqe_next); \
} while (0) } while (0)
/* #define TAILQ_CONCAT(head1, head2, field) do { \
* Circular queue definitions. if (!TAILQ_EMPTY(head2)) { \
*/ *(head1)->tqh_last = (head2)->tqh_first; \
#define CIRCLEQ_HEAD(name, type) \ (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \
struct name { \ (head1)->tqh_last = (head2)->tqh_last; \
struct type *cqh_first; /* first element */ \ TAILQ_INIT((head2)); \
struct type *cqh_last; /* last element */ \ } \
}
#define CIRCLEQ_HEAD_INITIALIZER(head) \
{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
#define CIRCLEQ_ENTRY(type) \
struct { \
struct type *cqe_next; /* next element */ \
struct type *cqe_prev; /* previous element */ \
}
/*
* Circular queue access methods
*/
#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
#define CIRCLEQ_LAST(head) ((head)->cqh_last)
#define CIRCLEQ_END(head) ((void *)(head))
#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
#define CIRCLEQ_EMPTY(head) \
(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
#define CIRCLEQ_FOREACH(var, head, field) \
for((var) = CIRCLEQ_FIRST(head); \
(var) != CIRCLEQ_END(head); \
(var) = CIRCLEQ_NEXT(var, field))
#define CIRCLEQ_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = CIRCLEQ_FIRST(head); \
(var) != CIRCLEQ_END(head) && \
((tvar) = CIRCLEQ_NEXT(var, field), 1); \
(var) = (tvar))
#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
for((var) = CIRCLEQ_LAST(head); \
(var) != CIRCLEQ_END(head); \
(var) = CIRCLEQ_PREV(var, field))
#define CIRCLEQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
for ((var) = CIRCLEQ_LAST(head, headname); \
(var) != CIRCLEQ_END(head) && \
((tvar) = CIRCLEQ_PREV(var, headname, field), 1); \
(var) = (tvar))
/*
* Circular queue functions.
*/
#define CIRCLEQ_INIT(head) do { \
(head)->cqh_first = CIRCLEQ_END(head); \
(head)->cqh_last = CIRCLEQ_END(head); \
} while (0)
#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
(elm)->field.cqe_next = (listelm)->field.cqe_next; \
(elm)->field.cqe_prev = (listelm); \
if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
(head)->cqh_last = (elm); \
else \
(listelm)->field.cqe_next->field.cqe_prev = (elm); \
(listelm)->field.cqe_next = (elm); \
} while (0)
#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
(elm)->field.cqe_next = (listelm); \
(elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
(head)->cqh_first = (elm); \
else \
(listelm)->field.cqe_prev->field.cqe_next = (elm); \
(listelm)->field.cqe_prev = (elm); \
} while (0)
#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
(elm)->field.cqe_next = (head)->cqh_first; \
(elm)->field.cqe_prev = CIRCLEQ_END(head); \
if ((head)->cqh_last == CIRCLEQ_END(head)) \
(head)->cqh_last = (elm); \
else \
(head)->cqh_first->field.cqe_prev = (elm); \
(head)->cqh_first = (elm); \
} while (0)
#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.cqe_next = CIRCLEQ_END(head); \
(elm)->field.cqe_prev = (head)->cqh_last; \
if ((head)->cqh_first == CIRCLEQ_END(head)) \
(head)->cqh_first = (elm); \
else \
(head)->cqh_last->field.cqe_next = (elm); \
(head)->cqh_last = (elm); \
} while (0)
#define CIRCLEQ_REMOVE(head, elm, field) do { \
if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
(head)->cqh_last = (elm)->field.cqe_prev; \
else \
(elm)->field.cqe_next->field.cqe_prev = \
(elm)->field.cqe_prev; \
if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
(head)->cqh_first = (elm)->field.cqe_next; \
else \
(elm)->field.cqe_prev->field.cqe_next = \
(elm)->field.cqe_next; \
_Q_INVALIDATE((elm)->field.cqe_prev); \
_Q_INVALIDATE((elm)->field.cqe_next); \
} while (0)
#define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
CIRCLEQ_END(head)) \
(head).cqh_last = (elm2); \
else \
(elm2)->field.cqe_next->field.cqe_prev = (elm2); \
if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
CIRCLEQ_END(head)) \
(head).cqh_first = (elm2); \
else \
(elm2)->field.cqe_prev->field.cqe_next = (elm2); \
_Q_INVALIDATE((elm)->field.cqe_prev); \
_Q_INVALIDATE((elm)->field.cqe_next); \
} while (0) } while (0)
#endif /* !_SYS_QUEUE_H_ */ #endif /* !_SYS_QUEUE_H_ */

View File

@ -532,6 +532,12 @@ AC_COMPILE_IFELSE([AC_LANG_SOURCE(
) )
# Look for a suitable queue.h. # Look for a suitable queue.h.
AC_CHECK_DECL(
TAILQ_CONCAT,
found_queue_h=yes,
found_queue_h=no,
[#include <sys/queue.h>]
)
AC_CHECK_DECL( AC_CHECK_DECL(
TAILQ_PREV, TAILQ_PREV,
found_queue_h=yes, found_queue_h=yes,