tmux/grid.c

983 lines
23 KiB
C
Raw Normal View History

/* $OpenBSD$ */
/*
* Copyright (c) 2008 Nicholas Marriott <nicholas.marriott@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF MIND, USE, DATA OR PROFITS, WHETHER
* IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
#include "tmux.h"
/*
* Grid data. This is the basic data structure that represents what is shown on
* screen.
*
* A grid is a grid of cells (struct grid_cell). Lines are not allocated until
* cells in that line are written to. The grid is split into history and
* viewable data with the history starting at row (line) 0 and extending to
* (hsize - 1); from hsize to hsize + (sy - 1) is the viewable data. All
* functions in this file work on absolute coordinates, grid-view.c has
* functions which work on the screen data.
*/
/* Default grid cell data. */
const struct grid_cell grid_default_cell = {
0, 0, 8, 8, { { ' ' }, 0, 1, 1 }
};
const struct grid_cell_entry grid_default_entry = {
0, { .data = { 0, 8, 8, ' ' } }
};
static void grid_expand_line(struct grid *, u_int, u_int, u_int);
static void grid_empty_line(struct grid *, u_int, u_int);
static void grid_reflow_copy(struct grid_line *, u_int, struct grid_line *,
u_int, u_int);
static void grid_reflow_join(struct grid *, u_int *, struct grid_line *,
u_int);
static void grid_reflow_split(struct grid *, u_int *, struct grid_line *,
u_int, u_int);
static void grid_reflow_move(struct grid *, u_int *, struct grid_line *);
static size_t grid_string_cells_fg(const struct grid_cell *, int *);
static size_t grid_string_cells_bg(const struct grid_cell *, int *);
static void grid_string_cells_code(const struct grid_cell *,
const struct grid_cell *, char *, size_t, int);
/* Set cell as extended. */
static struct grid_cell *
grid_extended_cell(struct grid_line *gl, struct grid_cell_entry *gce,
const struct grid_cell *gc)
{
struct grid_cell *gcp;
gl->flags |= GRID_LINE_EXTENDED;
if (~gce->flags & GRID_FLAG_EXTENDED) {
gl->extddata = xreallocarray(gl->extddata, gl->extdsize + 1,
sizeof *gl->extddata);
gce->offset = gl->extdsize++;
gce->flags = gc->flags | GRID_FLAG_EXTENDED;
}
if (gce->offset >= gl->extdsize)
fatalx("offset too big");
gcp = &gl->extddata[gce->offset];
memcpy(gcp, gc, sizeof *gcp);
return (gcp);
}
/* Copy default into a cell. */
static void
grid_clear_cell(struct grid *gd, u_int px, u_int py, u_int bg)
{
struct grid_line *gl = &gd->linedata[py];
struct grid_cell_entry *gce = &gl->celldata[px];
struct grid_cell *gc;
memcpy(gce, &grid_default_entry, sizeof *gce);
if (bg & COLOUR_FLAG_RGB) {
gc = grid_extended_cell(gl, gce, &grid_default_cell);
gc->bg = bg;
} else {
if (bg & COLOUR_FLAG_256)
gce->flags |= GRID_FLAG_BG256;
gce->data.bg = bg;
}
}
/* Check grid y position. */
static int
grid_check_y(struct grid *gd, u_int py)
{
if ((py) >= (gd)->hsize + (gd)->sy) {
log_debug("y out of range: %u", py);
return (-1);
}
return (0);
}
/* Compare grid cells. Return 1 if equal, 0 if not. */
int
grid_cells_equal(const struct grid_cell *gca, const struct grid_cell *gcb)
{
if (gca->fg != gcb->fg || gca->bg != gcb->bg)
return (0);
if (gca->attr != gcb->attr || gca->flags != gcb->flags)
return (0);
if (gca->data.width != gcb->data.width)
return (0);
if (gca->data.size != gcb->data.size)
return (0);
return (memcmp(gca->data.data, gcb->data.data, gca->data.size) == 0);
}
/* Create a new grid. */
struct grid *
grid_create(u_int sx, u_int sy, u_int hlimit)
{
struct grid *gd;
gd = xmalloc(sizeof *gd);
gd->sx = sx;
gd->sy = sy;
gd->flags = GRID_HISTORY;
gd->hscrolled = 0;
gd->hsize = 0;
gd->hlimit = hlimit;
gd->linedata = xcalloc(gd->sy, sizeof *gd->linedata);
return (gd);
}
/* Destroy grid. */
void
grid_destroy(struct grid *gd)
{
struct grid_line *gl;
u_int yy;
for (yy = 0; yy < gd->hsize + gd->sy; yy++) {
gl = &gd->linedata[yy];
free(gl->celldata);
free(gl->extddata);
}
free(gd->linedata);
free(gd);
}
/* Compare grids. */
int
grid_compare(struct grid *ga, struct grid *gb)
{
struct grid_line *gla, *glb;
struct grid_cell gca, gcb;
u_int xx, yy;
if (ga->sx != gb->sx || ga->sy != gb->sy)
return (1);
for (yy = 0; yy < ga->sy; yy++) {
gla = &ga->linedata[yy];
glb = &gb->linedata[yy];
if (gla->cellsize != glb->cellsize)
return (1);
for (xx = 0; xx < gla->cellsize; xx++) {
grid_get_cell(ga, xx, yy, &gca);
grid_get_cell(gb, xx, yy, &gcb);
if (!grid_cells_equal(&gca, &gcb))
return (1);
}
}
return (0);
}
/*
* Collect lines from the history if at the limit. Free the top (oldest) 10%
* and shift up.
*/
void
grid_collect_history(struct grid *gd, u_int bg)
{
u_int yy;
if (gd->hsize < gd->hlimit)
return;
yy = gd->hlimit / 10;
if (yy < 1)
yy = 1;
grid_move_lines(gd, 0, yy, gd->hsize + gd->sy - yy, bg);
gd->hsize -= yy;
if (gd->hscrolled > gd->hsize)
gd->hscrolled = gd->hsize;
}
/*
* Scroll the entire visible screen, moving one line into the history. Just
* allocate a new line at the bottom and move the history size indicator.
*/
void
grid_scroll_history(struct grid *gd, u_int bg)
{
u_int yy;
yy = gd->hsize + gd->sy;
gd->linedata = xreallocarray(gd->linedata, yy + 1,
sizeof *gd->linedata);
grid_empty_line(gd, yy, bg);
gd->hscrolled++;
gd->hsize++;
}
/* Clear the history. */
void
grid_clear_history(struct grid *gd)
{
grid_clear_lines(gd, 0, gd->hsize, 8);
grid_move_lines(gd, 0, gd->hsize, gd->sy, 8);
gd->hscrolled = 0;
gd->hsize = 0;
gd->linedata = xreallocarray(gd->linedata, gd->sy,
sizeof *gd->linedata);
}
/* Scroll a region up, moving the top line into the history. */
void
grid_scroll_history_region(struct grid *gd, u_int upper, u_int lower)
{
struct grid_line *gl_history, *gl_upper, *gl_lower;
u_int yy;
/* Create a space for a new line. */
yy = gd->hsize + gd->sy;
gd->linedata = xreallocarray(gd->linedata, yy + 1,
sizeof *gd->linedata);
/* Move the entire screen down to free a space for this line. */
gl_history = &gd->linedata[gd->hsize];
memmove(gl_history + 1, gl_history, gd->sy * sizeof *gl_history);
/* Adjust the region and find its start and end. */
upper++;
gl_upper = &gd->linedata[upper];
lower++;
gl_lower = &gd->linedata[lower];
/* Move the line into the history. */
memcpy(gl_history, gl_upper, sizeof *gl_history);
/* Then move the region up and clear the bottom line. */
memmove(gl_upper, gl_upper + 1, (lower - upper) * sizeof *gl_upper);
memset(gl_lower, 0, sizeof *gl_lower);
/* Move the history offset down over the line. */
gd->hscrolled++;
gd->hsize++;
}
/* Expand line to fit to cell. */
static void
grid_expand_line(struct grid *gd, u_int py, u_int sx, u_int bg)
{
struct grid_line *gl;
u_int xx;
gl = &gd->linedata[py];
if (sx <= gl->cellsize)
return;
2017-02-08 08:26:35 +00:00
if (sx < gd->sx / 4)
sx = gd->sx / 4;
else if (sx < gd->sx / 2)
sx = gd->sx / 2;
else
sx = gd->sx;
gl->celldata = xreallocarray(gl->celldata, sx, sizeof *gl->celldata);
for (xx = gl->cellsize; xx < sx; xx++)
grid_clear_cell(gd, xx, py, bg);
gl->cellsize = sx;
}
/* Empty a line and set background colour if needed. */
static void
grid_empty_line(struct grid *gd, u_int py, u_int bg)
{
memset(&gd->linedata[py], 0, sizeof gd->linedata[py]);
if (bg != 8)
grid_expand_line(gd, py, gd->sx, bg);
}
/* Peek at grid line. */
const struct grid_line *
grid_peek_line(struct grid *gd, u_int py)
{
if (grid_check_y(gd, py) != 0)
return (NULL);
return (&gd->linedata[py]);
}
/* Get cell for reading. */
void
grid_get_cell(struct grid *gd, u_int px, u_int py, struct grid_cell *gc)
{
struct grid_line *gl;
struct grid_cell_entry *gce;
if (grid_check_y(gd, py) != 0 || px >= gd->linedata[py].cellsize) {
memcpy(gc, &grid_default_cell, sizeof *gc);
return;
}
gl = &gd->linedata[py];
gce = &gl->celldata[px];
if (gce->flags & GRID_FLAG_EXTENDED) {
if (gce->offset >= gl->extdsize)
memcpy(gc, &grid_default_cell, sizeof *gc);
else
memcpy(gc, &gl->extddata[gce->offset], sizeof *gc);
return;
}
gc->flags = gce->flags & ~(GRID_FLAG_FG256|GRID_FLAG_BG256);
gc->attr = gce->data.attr;
gc->fg = gce->data.fg;
if (gce->flags & GRID_FLAG_FG256)
gc->fg |= COLOUR_FLAG_256;
gc->bg = gce->data.bg;
if (gce->flags & GRID_FLAG_BG256)
gc->bg |= COLOUR_FLAG_256;
utf8_set(&gc->data, gce->data.data);
}
/* Set cell at relative position. */
void
2013-10-10 12:01:14 +00:00
grid_set_cell(struct grid *gd, u_int px, u_int py, const struct grid_cell *gc)
{
struct grid_line *gl;
struct grid_cell_entry *gce;
int extended;
if (grid_check_y(gd, py) != 0)
return;
grid_expand_line(gd, py, px + 1, 8);
gl = &gd->linedata[py];
gce = &gl->celldata[px];
if (px + 1 > gl->cellused)
gl->cellused = px + 1;
extended = (gce->flags & GRID_FLAG_EXTENDED);
if (!extended && (gc->data.size != 1 || gc->data.width != 1))
extended = 1;
if (!extended && (gc->fg & COLOUR_FLAG_RGB))
extended = 1;
if (!extended && (gc->bg & COLOUR_FLAG_RGB))
extended = 1;
if (extended) {
grid_extended_cell(gl, gce, gc);
return;
}
gce->flags = gc->flags;
gce->data.attr = gc->attr;
gce->data.fg = gc->fg & 0xff;
if (gc->fg & COLOUR_FLAG_256)
gce->flags |= GRID_FLAG_FG256;
gce->data.bg = gc->bg & 0xff;
if (gc->bg & COLOUR_FLAG_256)
gce->flags |= GRID_FLAG_BG256;
gce->data.data = gc->data.data[0];
}
/* Clear area. */
void
grid_clear(struct grid *gd, u_int px, u_int py, u_int nx, u_int ny, u_int bg)
{
u_int xx, yy;
if (nx == 0 || ny == 0)
return;
if (px == 0 && nx == gd->sx) {
grid_clear_lines(gd, py, ny, bg);
return;
}
if (grid_check_y(gd, py) != 0)
return;
if (grid_check_y(gd, py + ny - 1) != 0)
return;
for (yy = py; yy < py + ny; yy++) {
if (px + nx >= gd->sx && px < gd->linedata[yy].cellused)
gd->linedata[yy].cellused = px;
if (px > gd->linedata[yy].cellsize && bg == 8)
continue;
if (px + nx >= gd->linedata[yy].cellsize && bg == 8) {
gd->linedata[yy].cellsize = px;
continue;
}
grid_expand_line(gd, yy, px + nx, bg);
for (xx = px; xx < px + nx; xx++)
grid_clear_cell(gd, xx, yy, bg);
}
}
/* Clear lines. This just frees and truncates the lines. */
void
grid_clear_lines(struct grid *gd, u_int py, u_int ny, u_int bg)
{
struct grid_line *gl;
u_int yy;
if (ny == 0)
return;
if (grid_check_y(gd, py) != 0)
return;
if (grid_check_y(gd, py + ny - 1) != 0)
return;
for (yy = py; yy < py + ny; yy++) {
gl = &gd->linedata[yy];
free(gl->celldata);
free(gl->extddata);
grid_empty_line(gd, yy, bg);
}
}
/* Move a group of lines. */
void
grid_move_lines(struct grid *gd, u_int dy, u_int py, u_int ny, u_int bg)
{
u_int yy;
if (ny == 0 || py == dy)
return;
if (grid_check_y(gd, py) != 0)
return;
if (grid_check_y(gd, py + ny - 1) != 0)
return;
if (grid_check_y(gd, dy) != 0)
return;
if (grid_check_y(gd, dy + ny - 1) != 0)
return;
/* Free any lines which are being replaced. */
for (yy = dy; yy < dy + ny; yy++) {
if (yy >= py && yy < py + ny)
continue;
grid_clear_lines(gd, yy, 1, bg);
}
memmove(&gd->linedata[dy], &gd->linedata[py],
ny * (sizeof *gd->linedata));
/* Wipe any lines that have been moved (without freeing them). */
for (yy = py; yy < py + ny; yy++) {
if (yy < dy || yy >= dy + ny)
grid_empty_line(gd, yy, bg);
}
}
/* Move a group of cells. */
void
grid_move_cells(struct grid *gd, u_int dx, u_int px, u_int py, u_int nx,
u_int bg)
{
struct grid_line *gl;
u_int xx;
if (nx == 0 || px == dx)
return;
if (grid_check_y(gd, py) != 0)
return;
gl = &gd->linedata[py];
grid_expand_line(gd, py, px + nx, 8);
grid_expand_line(gd, py, dx + nx, 8);
memmove(&gl->celldata[dx], &gl->celldata[px],
nx * sizeof *gl->celldata);
/* Wipe any cells that have been moved. */
for (xx = px; xx < px + nx; xx++) {
if (xx >= dx && xx < dx + nx)
continue;
grid_clear_cell(gd, xx, py, bg);
}
}
/* Get ANSI foreground sequence. */
static size_t
grid_string_cells_fg(const struct grid_cell *gc, int *values)
{
size_t n;
u_char r, g, b;
n = 0;
if (gc->fg & COLOUR_FLAG_256) {
values[n++] = 38;
values[n++] = 5;
values[n++] = gc->fg & 0xff;
} else if (gc->fg & COLOUR_FLAG_RGB) {
values[n++] = 38;
values[n++] = 2;
colour_split_rgb(gc->fg, &r, &g, &b);
values[n++] = r;
values[n++] = g;
values[n++] = b;
} else {
switch (gc->fg) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
values[n++] = gc->fg + 30;
break;
case 8:
values[n++] = 39;
break;
case 90:
case 91:
case 92:
case 93:
case 94:
case 95:
case 96:
case 97:
values[n++] = gc->fg;
break;
}
}
return (n);
}
/* Get ANSI background sequence. */
static size_t
grid_string_cells_bg(const struct grid_cell *gc, int *values)
{
size_t n;
u_char r, g, b;
n = 0;
if (gc->bg & COLOUR_FLAG_256) {
values[n++] = 48;
values[n++] = 5;
values[n++] = gc->bg & 0xff;
} else if (gc->bg & COLOUR_FLAG_RGB) {
values[n++] = 48;
values[n++] = 2;
colour_split_rgb(gc->bg, &r, &g, &b);
values[n++] = r;
values[n++] = g;
values[n++] = b;
} else {
switch (gc->bg) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
values[n++] = gc->bg + 40;
break;
case 8:
values[n++] = 49;
break;
case 100:
case 101:
case 102:
case 103:
case 104:
case 105:
case 106:
case 107:
values[n++] = gc->bg - 10;
break;
}
}
return (n);
}
/*
* Returns ANSI code to set particular attributes (colour, bold and so on)
* given a current state. The output buffer must be able to hold at least 57
* bytes.
*/
static void
grid_string_cells_code(const struct grid_cell *lastgc,
const struct grid_cell *gc, char *buf, size_t len, int escape_c0)
{
int oldc[64], newc[64], s[128];
size_t noldc, nnewc, n, i;
u_int attr = gc->attr;
u_int lastattr = lastgc->attr;
char tmp[64];
struct {
u_int mask;
u_int code;
} attrs[] = {
{ GRID_ATTR_BRIGHT, 1 },
{ GRID_ATTR_DIM, 2 },
{ GRID_ATTR_ITALICS, 3 },
{ GRID_ATTR_UNDERSCORE, 4 },
{ GRID_ATTR_BLINK, 5 },
{ GRID_ATTR_REVERSE, 7 },
{ GRID_ATTR_HIDDEN, 8 }
};
n = 0;
/* If any attribute is removed, begin with 0. */
for (i = 0; i < nitems(attrs); i++) {
if (!(attr & attrs[i].mask) && (lastattr & attrs[i].mask)) {
s[n++] = 0;
lastattr &= GRID_ATTR_CHARSET;
break;
}
}
/* For each attribute that is newly set, add its code. */
for (i = 0; i < nitems(attrs); i++) {
if ((attr & attrs[i].mask) && !(lastattr & attrs[i].mask))
s[n++] = attrs[i].code;
}
/* If the foreground colour changed, append its parameters. */
nnewc = grid_string_cells_fg(gc, newc);
noldc = grid_string_cells_fg(lastgc, oldc);
if (nnewc != noldc || memcmp(newc, oldc, nnewc * sizeof newc[0]) != 0) {
for (i = 0; i < nnewc; i++)
s[n++] = newc[i];
}
/* If the background colour changed, append its parameters. */
nnewc = grid_string_cells_bg(gc, newc);
noldc = grid_string_cells_bg(lastgc, oldc);
if (nnewc != noldc || memcmp(newc, oldc, nnewc * sizeof newc[0]) != 0) {
for (i = 0; i < nnewc; i++)
s[n++] = newc[i];
}
/* If there are any parameters, append an SGR code. */
*buf = '\0';
if (n > 0) {
if (escape_c0)
strlcat(buf, "\\033[", len);
else
strlcat(buf, "\033[", len);
for (i = 0; i < n; i++) {
if (i + 1 < n)
xsnprintf(tmp, sizeof tmp, "%d;", s[i]);
else
xsnprintf(tmp, sizeof tmp, "%d", s[i]);
strlcat(buf, tmp, len);
}
strlcat(buf, "m", len);
}
/* Append shift in/shift out if needed. */
if ((attr & GRID_ATTR_CHARSET) && !(lastattr & GRID_ATTR_CHARSET)) {
if (escape_c0)
strlcat(buf, "\\016", len); /* SO */
else
strlcat(buf, "\016", len); /* SO */
}
if (!(attr & GRID_ATTR_CHARSET) && (lastattr & GRID_ATTR_CHARSET)) {
if (escape_c0)
strlcat(buf, "\\017", len); /* SI */
else
strlcat(buf, "\017", len); /* SI */
}
}
/* Convert cells into a string. */
char *
grid_string_cells(struct grid *gd, u_int px, u_int py, u_int nx,
struct grid_cell **lastgc, int with_codes, int escape_c0, int trim)
{
struct grid_cell gc;
static struct grid_cell lastgc1;
2014-09-01 21:50:18 +00:00
const char *data;
char *buf, code[128];
size_t len, off, size, codelen;
u_int xx;
const struct grid_line *gl;
if (lastgc != NULL && *lastgc == NULL) {
memcpy(&lastgc1, &grid_default_cell, sizeof lastgc1);
*lastgc = &lastgc1;
}
len = 128;
buf = xmalloc(len);
off = 0;
gl = grid_peek_line(gd, py);
for (xx = px; xx < px + nx; xx++) {
if (gl == NULL || xx >= gl->cellsize)
break;
grid_get_cell(gd, xx, py, &gc);
if (gc.flags & GRID_FLAG_PADDING)
continue;
if (with_codes) {
grid_string_cells_code(*lastgc, &gc, code, sizeof code,
escape_c0);
codelen = strlen(code);
memcpy(*lastgc, &gc, sizeof **lastgc);
} else
codelen = 0;
data = gc.data.data;
size = gc.data.size;
if (escape_c0 && size == 1 && *data == '\\') {
data = "\\\\";
size = 2;
}
while (len < off + size + codelen + 1) {
buf = xreallocarray(buf, 2, len);
len *= 2;
}
if (codelen != 0) {
memcpy(buf + off, code, codelen);
off += codelen;
}
memcpy(buf + off, data, size);
off += size;
}
if (trim) {
while (off > 0 && buf[off - 1] == ' ')
off--;
}
buf[off] = '\0';
return (buf);
}
/*
* Duplicate a set of lines between two grids. If there aren't enough lines in
* either source or destination, the number of lines is limited to the number
* available.
*/
void
2013-10-10 12:01:14 +00:00
grid_duplicate_lines(struct grid *dst, u_int dy, struct grid *src, u_int sy,
u_int ny)
{
struct grid_line *dstl, *srcl;
u_int yy;
if (dy + ny > dst->hsize + dst->sy)
ny = dst->hsize + dst->sy - dy;
if (sy + ny > src->hsize + src->sy)
ny = src->hsize + src->sy - sy;
grid_clear_lines(dst, dy, ny, 8);
for (yy = 0; yy < ny; yy++) {
srcl = &src->linedata[sy];
dstl = &dst->linedata[dy];
memcpy(dstl, srcl, sizeof *dstl);
if (srcl->cellsize != 0) {
dstl->celldata = xreallocarray(NULL,
srcl->cellsize, sizeof *dstl->celldata);
memcpy(dstl->celldata, srcl->celldata,
srcl->cellsize * sizeof *dstl->celldata);
} else
dstl->celldata = NULL;
if (srcl->extdsize != 0) {
dstl->extdsize = srcl->extdsize;
dstl->extddata = xreallocarray(NULL, dstl->extdsize,
sizeof *dstl->extddata);
memcpy(dstl->extddata, srcl->extddata, dstl->extdsize *
sizeof *dstl->extddata);
}
sy++;
dy++;
}
}
/* Copy a section of a line. */
static void
grid_reflow_copy(struct grid_line *dst_gl, u_int to, struct grid_line *src_gl,
u_int from, u_int to_copy)
{
struct grid_cell_entry *gce;
u_int i, was;
memcpy(&dst_gl->celldata[to], &src_gl->celldata[from],
to_copy * sizeof *dst_gl->celldata);
for (i = to; i < to + to_copy; i++) {
gce = &dst_gl->celldata[i];
if (~gce->flags & GRID_FLAG_EXTENDED)
continue;
was = gce->offset;
dst_gl->extddata = xreallocarray(dst_gl->extddata,
dst_gl->extdsize + 1, sizeof *dst_gl->extddata);
gce->offset = dst_gl->extdsize++;
memcpy(&dst_gl->extddata[gce->offset], &src_gl->extddata[was],
sizeof *dst_gl->extddata);
}
}
/* Join line data. */
static void
grid_reflow_join(struct grid *dst, u_int *py, struct grid_line *src_gl,
u_int new_x)
{
struct grid_line *dst_gl = &dst->linedata[(*py) - 1];
u_int left, to_copy, ox, nx;
/* How much is left on the old line? */
left = new_x - dst_gl->cellused;
/* Work out how much to append. */
to_copy = src_gl->cellused;
if (to_copy > left)
to_copy = left;
ox = dst_gl->cellused;
nx = ox + to_copy;
/* Resize the destination line. */
dst_gl->celldata = xreallocarray(dst_gl->celldata, nx,
sizeof *dst_gl->celldata);
dst_gl->cellsize = dst_gl->cellused = nx;
/* Append as much as possible. */
grid_reflow_copy(dst_gl, ox, src_gl, 0, to_copy);
/* If there is any left in the source, split it. */
if (src_gl->cellused > to_copy) {
dst_gl->flags |= GRID_LINE_WRAPPED;
src_gl->cellused -= to_copy;
grid_reflow_split(dst, py, src_gl, new_x, to_copy);
}
}
/* Split line data. */
static void
grid_reflow_split(struct grid *dst, u_int *py, struct grid_line *src_gl,
u_int new_x, u_int offset)
{
struct grid_line *dst_gl = NULL;
u_int to_copy;
/* Loop and copy sections of the source line. */
while (src_gl->cellused > 0) {
/* Create new line. */
if (*py >= dst->hsize + dst->sy)
grid_scroll_history(dst, 8);
dst_gl = &dst->linedata[*py];
(*py)++;
/* How much should we copy? */
to_copy = new_x;
if (to_copy > src_gl->cellused)
to_copy = src_gl->cellused;
/* Expand destination line. */
dst_gl->celldata = xreallocarray(NULL, to_copy,
sizeof *dst_gl->celldata);
dst_gl->cellsize = dst_gl->cellused = to_copy;
dst_gl->flags |= GRID_LINE_WRAPPED;
/* Copy the data. */
grid_reflow_copy(dst_gl, 0, src_gl, offset, to_copy);
/* Move offset and reduce old line size. */
offset += to_copy;
src_gl->cellused -= to_copy;
}
/* Last line is not wrapped. */
if (dst_gl != NULL)
dst_gl->flags &= ~GRID_LINE_WRAPPED;
}
/* Move line data. */
static void
grid_reflow_move(struct grid *dst, u_int *py, struct grid_line *src_gl)
{
struct grid_line *dst_gl;
/* Create new line. */
if (*py >= dst->hsize + dst->sy)
grid_scroll_history(dst, 8);
dst_gl = &dst->linedata[*py];
(*py)++;
/* Copy the old line. */
memcpy(dst_gl, src_gl, sizeof *dst_gl);
dst_gl->flags &= ~GRID_LINE_WRAPPED;
/* Clear old line. */
src_gl->celldata = NULL;
src_gl->extddata = NULL;
}
/*
* Reflow lines from src grid into dst grid of width new_x. Returns number of
* lines fewer in the visible area. The source grid is destroyed.
*/
u_int
grid_reflow(struct grid *dst, struct grid *src, u_int new_x)
{
u_int py, sy, line;
int previous_wrapped;
struct grid_line *src_gl;
py = 0;
sy = src->sy;
previous_wrapped = 0;
for (line = 0; line < sy + src->hsize; line++) {
src_gl = src->linedata + line;
if (!previous_wrapped) {
/* Wasn't wrapped. If smaller, move to destination. */
if (src_gl->cellused <= new_x)
grid_reflow_move(dst, &py, src_gl);
else
grid_reflow_split(dst, &py, src_gl, new_x, 0);
} else {
/* Previous was wrapped. Try to join. */
grid_reflow_join(dst, &py, src_gl, new_x);
}
previous_wrapped = (src_gl->flags & GRID_LINE_WRAPPED);
/* This is where we started scrolling. */
if (line == sy + src->hsize - src->hscrolled - 1)
dst->hscrolled = 0;
}
grid_destroy(src);
if (py > sy)
return (0);
return (sy - py);
}