package uuid import ( "crypto/md5" "crypto/rand" "crypto/sha1" "encoding/binary" "fmt" "hash" "io" "net" "os" "sync" "time" ) // Difference in 100-nanosecond intervals between // UUID epoch (October 15, 1582) and Unix epoch (January 1, 1970). const epochStart = 122192928000000000 type epochFunc func() time.Time type hwAddrFunc func() (net.HardwareAddr, error) var ( global = newRFC4122Generator() posixUID = uint32(os.Getuid()) posixGID = uint32(os.Getgid()) ) // NewV1 returns UUID based on current timestamp and MAC address. func NewV1() (UUID, error) { return global.NewV1() } // NewV2 returns DCE Security UUID based on POSIX UID/GID. func NewV2(domain byte) (UUID, error) { return global.NewV2(domain) } // NewV3 returns UUID based on MD5 hash of namespace UUID and name. func NewV3(ns UUID, name string) UUID { return global.NewV3(ns, name) } // NewV4 returns random generated UUID. func NewV4() (UUID, error) { return global.NewV4() } // NewV5 returns UUID based on SHA-1 hash of namespace UUID and name. func NewV5(ns UUID, name string) UUID { return global.NewV5(ns, name) } // Generator provides interface for generating UUIDs. type Generator interface { NewV1() (UUID, error) NewV2(domain byte) (UUID, error) NewV3(ns UUID, name string) UUID NewV4() (UUID, error) NewV5(ns UUID, name string) UUID } // Default generator implementation. type rfc4122Generator struct { clockSequenceOnce sync.Once hardwareAddrOnce sync.Once storageMutex sync.Mutex rand io.Reader epochFunc epochFunc hwAddrFunc hwAddrFunc lastTime uint64 clockSequence uint16 hardwareAddr [6]byte } func newRFC4122Generator() Generator { return &rfc4122Generator{ epochFunc: time.Now, hwAddrFunc: defaultHWAddrFunc, rand: rand.Reader, } } // NewV1 returns UUID based on current timestamp and MAC address. func (g *rfc4122Generator) NewV1() (UUID, error) { u := UUID{} timeNow, clockSeq, err := g.getClockSequence() if err != nil { return Nil, err } binary.BigEndian.PutUint32(u[0:], uint32(timeNow)) binary.BigEndian.PutUint16(u[4:], uint16(timeNow>>32)) binary.BigEndian.PutUint16(u[6:], uint16(timeNow>>48)) binary.BigEndian.PutUint16(u[8:], clockSeq) hardwareAddr, err := g.getHardwareAddr() if err != nil { return Nil, err } copy(u[10:], hardwareAddr) u.SetVersion(V1) u.SetVariant(VariantRFC4122) return u, nil } // NewV2 returns DCE Security UUID based on POSIX UID/GID. func (g *rfc4122Generator) NewV2(domain byte) (UUID, error) { u, err := g.NewV1() if err != nil { return Nil, err } switch domain { case DomainPerson: binary.BigEndian.PutUint32(u[:], posixUID) case DomainGroup: binary.BigEndian.PutUint32(u[:], posixGID) } u[9] = domain u.SetVersion(V2) u.SetVariant(VariantRFC4122) return u, nil } // NewV3 returns UUID based on MD5 hash of namespace UUID and name. func (g *rfc4122Generator) NewV3(ns UUID, name string) UUID { u := newFromHash(md5.New(), ns, name) u.SetVersion(V3) u.SetVariant(VariantRFC4122) return u } // NewV4 returns random generated UUID. func (g *rfc4122Generator) NewV4() (UUID, error) { u := UUID{} if _, err := g.rand.Read(u[:]); err != nil { return Nil, err } u.SetVersion(V4) u.SetVariant(VariantRFC4122) return u, nil } // NewV5 returns UUID based on SHA-1 hash of namespace UUID and name. func (g *rfc4122Generator) NewV5(ns UUID, name string) UUID { u := newFromHash(sha1.New(), ns, name) u.SetVersion(V5) u.SetVariant(VariantRFC4122) return u } // Returns epoch and clock sequence. func (g *rfc4122Generator) getClockSequence() (uint64, uint16, error) { var err error g.clockSequenceOnce.Do(func() { buf := make([]byte, 2) if _, err = g.rand.Read(buf); err != nil { return } g.clockSequence = binary.BigEndian.Uint16(buf) }) if err != nil { return 0, 0, err } g.storageMutex.Lock() defer g.storageMutex.Unlock() timeNow := g.getEpoch() // Clock didn't change since last UUID generation. // Should increase clock sequence. if timeNow <= g.lastTime { g.clockSequence++ } g.lastTime = timeNow return timeNow, g.clockSequence, nil } // Returns hardware address. func (g *rfc4122Generator) getHardwareAddr() ([]byte, error) { var err error g.hardwareAddrOnce.Do(func() { if hwAddr, err := g.hwAddrFunc(); err == nil { copy(g.hardwareAddr[:], hwAddr) return } // Initialize hardwareAddr randomly in case // of real network interfaces absence. if _, err = g.rand.Read(g.hardwareAddr[:]); err != nil { return } // Set multicast bit as recommended by RFC 4122 g.hardwareAddr[0] |= 0x01 }) if err != nil { return []byte{}, err } return g.hardwareAddr[:], nil } // Returns difference in 100-nanosecond intervals between // UUID epoch (October 15, 1582) and current time. func (g *rfc4122Generator) getEpoch() uint64 { return epochStart + uint64(g.epochFunc().UnixNano()/100) } // Returns UUID based on hashing of namespace UUID and name. func newFromHash(h hash.Hash, ns UUID, name string) UUID { u := UUID{} h.Write(ns[:]) h.Write([]byte(name)) copy(u[:], h.Sum(nil)) return u } // Returns hardware address. func defaultHWAddrFunc() (net.HardwareAddr, error) { ifaces, err := net.Interfaces() if err != nil { return []byte{}, err } for _, iface := range ifaces { if len(iface.HardwareAddr) >= 6 { return iface.HardwareAddr, nil } } return []byte{}, fmt.Errorf("uuid: no HW address found") }